Selección De Modelo De Red Neuronal Profunda (Deep Learning) Óptimo Para El Reconocimiento De Enfermedades Usando Imágenes De Rayos X

2020-05-13
Show full item record
Abstract
En el proyecto, Selección de Modelo de Red Neuronal Profunda (Deep Learning) óptimo para el reconocimiento de enfermedades usando imágenes de Rayos X, comprende la resolución de un problema práctico en el ámbito médico en el que se propone un modelo óptimo y sencillo que permite la clasificación de una lista de enfermedades reconocibles por una red neuronal convolucional. De esta forma se abarca el proyecto a través de diferentes etapas que permiten una resolución semisecuencial, lo que concede una mayor trazabilidad frente a los experimentos que se ejecutan para reconocer la arquitectura que tenga mayor adaptación por lo tanto mayor rendimiento frente al problema. Todos estos experimentos son ejecutados bajo un entorno cloud que permite mayor potencia al momento de entrenar modelos que demanden gran cantidad de recursos. Por último, se realiza una comparativa entre los puntajes arrojados por los modelos entrenados de otras investigaciones, dando como conclusión que el modelo elegido se encuentra al nivel del estado del arte actual para este problema y grupo de datos. In the project, Selection of Deep Neural Network Model (Deep Learning) optimal for the recognition of diseases using X-ray images, includes the resolution of a practical problem in the medical field in which an optimal and simple model is proposed that allows the classification of a list of recognizable diseases by a convolutional neural network. In this way, the project is covered through different stages that allow a semi-sequential resolution, which gives greater traceability to the experiments that are executed to recognize the architecture that has better adaptation, therefore, better performance against the problem. All these experiments are performed under a cloud environment that allows more power when training models that demand a lot of resources. Finally, a comparison is made between the scores thrown by the trained models of other investigations, giving as conclusion that the chosen model is at the level of the current state of the art for this problem and group of dataThe following license files are associated with this item:
Línea gratuita: 018000180414 | e-mail: formacion.biblioteca@ucundinamarca.edu.co
Seccional Girardot: Carrera 19 No. 24-209 | (+571) 8335071
Seccional Ubaté: Calle 6 No. 9-80 | (+571) 8553055
Extensión Chía: Autopista Chía - Cajicá | Sector “El Cuarenta” | (+571) 8281483 Ext. 418
Extensión Chocontá: Carrera 3 No. 5-71 | (+571) 8562520
Extensión Facatativá: Calle 14 con Avenida 15 | (+571) 8920706
Extensión Soacha: Diagonal 9 No. 4 B-85 | (+571) 7219220
Extensión Zipaquirá: Carrera 7 No. 1-31 | (+571) 8515792
Oficinas Bogotá D.C.: Carrera 20 No. 39-32 Teusaquillo | (+571)7448180
Notificaciones judiciales:
Dirección Jurídica (+571) 8281483 Ext. 115 | e-mail oficinajuridicaudec@ucundinamarca.edu.coPolíticas de Tratamiento de Datos Personales
© 2018 UCUNDINAMARCA Generación Siglo 21
Vigilada Mineducación
Reconocida por resolución No. 19530, de Diciembre 30 de 1992 (MEN)
Oficina Asesora de Comunicaciones
Derechos reservados