Señores
UNIVERSIDAD DE CUNDINAMARCA
BIBLIOTECA
Ciudad

Fecha: jueves, 23 de febrero de 2017

SEDE/SECCIONAL/EXTENSIÓN: Seccional Girardot
DOCUMENTO: Trabajo De Grado
FACULTAD: Ciencias Agropecuarias
NIVEL ACADÉMICO DE FORMACIÓN O PROCESO: Pregrado
PROGRAMA ACADÉMICO: Ingeniería Ambiental

El Autor(Es):

<table>
<thead>
<tr>
<th>APELLIDOS COMPLETOS</th>
<th>NOMBRES COMPLETOS</th>
<th>NO. DOCUMENTO DE IDENTIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oviedo Tapia</td>
<td>Stefania</td>
<td>1070618682</td>
</tr>
<tr>
<td>Villalba Cortes</td>
<td>Erika Julieth</td>
<td>1105684636</td>
</tr>
</tbody>
</table>
Director(Es) del documento:

<table>
<thead>
<tr>
<th>APELLIDOS COMPLETOS</th>
<th>NOMBRES COMPLETOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramírez Calderón</td>
<td>José Ever</td>
</tr>
</tbody>
</table>

TÍTULO DEL DOCUMENTO

BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL *Moringa oleifera*

SUBTITULO

(Aplica solo para Tesis, Artículos Científicos, Disertaciones, Objetos Virtuales de Aprendizaje)

TRABAJO PARA OPTAR AL TÍTULO DE:

Aplica para Tesis/Trabajo de Grado/Pasantía

Ingeniero Ambiental

AÑO DE EDICION DEL DOCUMENTO

22/02/2017

NÚMERO DE PÁGINAS (Opcional)

DESCRIPTORES O PALABRAS CLAVES EN ESPAÑOL E INGLES: (Usar como mínimo 6 descriptoros)

<table>
<thead>
<tr>
<th>ESPAÑOL</th>
<th>INGLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espectrofotometría</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td>2. Remoción</td>
<td>removal</td>
</tr>
<tr>
<td>3. Concentración</td>
<td>Concentration</td>
</tr>
<tr>
<td>4. Taninos</td>
<td>Tannins</td>
</tr>
<tr>
<td>5. Polihidroxi-Polifenol</td>
<td>Polihidroxi-polifenol</td>
</tr>
<tr>
<td>6. Vainas</td>
<td>Pods</td>
</tr>
</tbody>
</table>
En la actualidad, la contaminación del agua por metales pesados se ha convertido en un problema ambiental en todo el mundo. Recientemente, la bioadsorción se ha propuesto como un procedimiento de tratamiento alternativo. Además, el mayor interés es la mejora de los residuos agroindustriales como materia prima para la producción de nuevos materiales. En este sentido, el objetivo de este estudio es Evaluar la capacidad de remoción de Mercurio, mediante procesos de bioadsorción, a partir del uso de vainas secas de la especie arbórea *Moringa oleifera*. Las vainas utilizadas fueron recolectadas centro de investigación CORPOICA Nataima, ubicado en el km 9 vía Espinal- Chicoral. Después de secado, molido y tamizado hasta un tamaño de partícula de 1 mm, se caracterizaron por Espectrofotometría Ultravioleta Visible. El potencial de las vainas de moringa para la remoción de cobre se ensayó en diferentes condiciones de pH (7), biomasa (5, 10 y 15g), concentración de metal (97 ppm), tiempo de contacto (20, 60 y 100 min) y volumen de solución (1 L). La concentración de metal residual se midió por espectrofotometría de absorción atómica (AAS). Los resultados mostraron que este biomaterial contiene taninos, que a su vez están compuestos por grupos polihidroxi-polifenol, adecuados para la retención de iones metálicos. La eliminación óptima de iones de Hg2+ se puede lograr a pH 7. De acuerdo con los resultados obtenidos, las vainas de moringa tienen características para aplicaciones de remediación de iones de mercurio de aguas contaminadas a bajo costo, fácil adquisición, eco-amigable y pH relativamente neutro.

ABSTRACT

At present, the pollution of the water by heavy metals has turned into an environmental problem into the whole world. Recently, the Bio-adsorption has proposed as a procedure of alternative treatment. In addition, the major interest is the improvement of the agroindustrial residues as raw material for the production of new materials. In this respect, the aim of this study is to evaluate the capacity of removal of Mercury, by means of processes of bioadsorción, from the use of dry pods of the arboreal species *Moringa oleifera*. The used pods were gathered center of investigation CORPOICA Nataima,
located in the km 9 Espinal route - Chicoral. After dried, ground and sifted up to a size of particle of 1 mm, they were characterized by Visible ultraviolet spectrophotometry. The potential of the pods of moringa for the removal of copper practised in different conditions of pH (7), biomass (5, 10 and 15g), metal concentration (97 ppm), time of contact (20, 60 and 100 min) and volume of solution (1 L). The concentration of residual metal measured up for spectrophotometry of atomic absorption (AAS). The results showed that this biomaterial contains tannins, which in turn are composed by groups Polyhydroxy-polyphenol, adapted for the retention of metallic ions. The ideal elimination of ions of Hg2+ can achieve to pH 7. In agreement with the obtained results, the pods of moringa have characteristics for applications of remediation of ions of mercury of waters contaminated the easy acquisition, amicable echo and pH relatively neutral.

AUTORIZACION DE PUBLICACIÓN

Por medio del presente escrito autorizo (Autorizamos) a la Universidad de Cundinamarca para que, en desarrollo de la presente licencia de uso parcial, pueda ejercer sobre mi (nuestra) obra las atribuciones que se indican a continuación, teniendo en cuenta que, en cualquier caso, la finalidad perseguida será facilitar, difundir y promover el aprendizaje, la enseñanza y la investigación.

En consecuencia, las atribuciones de usos temporales y parciales que por virtud de la presente licencia se autoriza a la Universidad de Cundinamarca, a los usuarios de la Biblioteca de la Universidad; así como a los usuarios de las redes, bases de datos y demás sitios web con los que la Universidad tenga perfeccionado un alianza, son:
Marque con una "x":

<table>
<thead>
<tr>
<th>AUTORIZO (AUTORIZAMOS)</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La conservación de los ejemplares necesarios en la Biblioteca.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. La consulta física o electrónica según corresponda.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. La reproducción por cualquier formato conocido o por conocer.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. La comunicación pública por cualquier procedimiento o medio físico o electrónico, así como su puesta a disposición en Internet.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
5. La inclusión en bases de datos y en sitios web sean éstos onerosos o gratuitos, existiendo con ellos previa alianza perfeccionada con la Universidad de Cundinamarca para efectos de satisfacer los fines previstos. En este evento, tales sitios y sus usuarios tendrán las mismas facultades que las aquí concedidas con las mismas limitaciones y condiciones.

6. La inclusión en el Repositorio Institucional.

De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honorados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización.

Para el caso de las Tesis, Trabajo de Grado o Pasantía, de manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis, Trabajo de Grado o Pasantía en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honorados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mi (nuestra) competencia exclusiva, eximiendo de toda responsabilidad a la Universidad de Cundinamarca por tales aspectos.

Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor.
De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Universidad de Cundinamarca está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.

NOTA: (Para Tesis, Trabajo de Grado o Pasantía):

Información Confidencial:

Esta Tesis, Trabajo de Grado o Pasantía, contiene información privilegiada, estratégica, secreta, confidencial y demás similar, o hace parte de la investigación que se adelanta y cuyos resultados finales no se han publicado. **SI** ___ **NO** x_.

En caso afirmativo expresamente indicaré (indicaremos), en carta adjunta tal situación con el fin de que se mantenga la restricción de acceso.

LICENCIA DE PUBLICACIÓN

Como titular(es) del derecho de autor, confiero(erímos) a la Universidad de Cundinamarca una licencia no exclusiva, limitada y gratuita sobre la obra que se integrará en el Repositorio Institucional, que se ajusta a las siguientes características:

a) Estará vigente a partir de la fecha de inclusión en el repositorio, por un plazo de 5 años, que serán prorrogables indefinidamente por el tiempo que dure el derecho patrimonial del autor. El autor podrá dar por terminada la licencia solicitándolo a la Universidad por escrito. (Para el caso de los Recursos Educativos Digitales, la Licencia de Publicación será permanente).

b) Autoriza a la Universidad de Cundinamarca a publicar la obra en formato y/o soporte digital, conociendo que, dado que se publica en Internet, por este hecho circula con un alcance mundial.

c) Los titulares aceptan que la autorización se hace a título gratuito, por lo tanto, renuncian a recibir beneficio alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente licencia y de la licencia de uso con que se publica.

d) El(los) Autor(es), garantizo (amos) que el documento en cuestión, es producto de mi(nuestra) plena autoría, de mi(nuestro) esfuerzo personal intelectual, como
consecuencia de mi (nuestra) creación original particular y, por tanto, soy(somos) el(los) único(s) titular(es) de la misma. Además, aseguro(aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos es de mi (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Universidad de Cundinamarca por tales aspectos.

e) En todo caso la Universidad de Cundinamarca se compromete a indicar siempre la autoría incluyendo el nombre del autor y la fecha de publicación.

f) Los titulares autorizan a la Universidad para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.

g) Los titulares aceptan que la Universidad de Cundinamarca pueda convertir el documento a cualquier medio o formato para propósitos de preservación digital.

h) Los titulares autorizan que la obra sea puesta a disposición del público en los términos autorizados en los literales anteriores bajo los límites definidos por la universidad en las “Condiciones de uso de estricto cumplimiento” de los recursos publicados en Repositorio Institucional, cuyo texto completo se puede consultar en biblioteca.unicundi.edu.co

i) Para el caso de los Recursos Educativos Digitales producidos por la Oficina de Educación Virtual, sus contenidos de publicación se rigen bajo la Licencia Creative Commons: Atribución- No comercial- Compartir Igual.

[j] Para el caso de los Artículos Científicos y Revistas, sus contenidos se rigen bajo la Licencia Creative Commons Atribución- No comercial- Sin derivar.
Nota:
Si el documento se basa en un trabajo que ha sido patrocinado o apoyado por una entidad, con excepción de Universidad de Cundinamarca, los autores garantizan que se ha cumplido con los derechos y obligaciones requeridos por el respectivo contrato o acuerdo.

La obra que se integrará en el Repositorio Institucional, está en el(los) siguiente(s) archivo(s).

<table>
<thead>
<tr>
<th>Nombre completo del Archivo Incluida su Extensión (Ej. Título Trabajo de Grado o Documento.pdf)</th>
<th>Tipo de documento (ej. Texto, imagen, video, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BIOSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera</td>
<td>Texto</td>
</tr>
</tbody>
</table>

En constancia de lo anterior, Firmo (amos) el presente documento:

<table>
<thead>
<tr>
<th>APELLIDOS Y NOMBRES COMPLETOS</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVIDO TAPIA STEFANIA</td>
<td></td>
</tr>
<tr>
<td>VILLALBA CORTÉS ERIKA JULIETH</td>
<td></td>
</tr>
</tbody>
</table>
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL MORINGA OLEÍFERA

STEFANIA OVIEDO TAPIA
COD: 363212128

ERIKA JULIETH VILLALBA CORTÉS
COD: 363212145

UNIVERSIDAD DE CUNDINAMARCA
FACULTAD DE CIENCIAS AGROPECUARIAS
PROGRAMA DE INGENIERÍA AMBIENTAL
GIRARDOT
2016
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleífera

STEFANIA OVIEDO TAPIA
COD: 363212128

ERIKA JULIETH VILLALBA CORTÉS
COD: 363212145

Trabajo de grado presentado como requisito para optar al título de:
Ingeniero Ambiental

Director:
JOSÉ EVER RAMÍREZ CALDERÓN M.Sc.
Zootecnista

UNIVERSIDAD DE CUNDINAMARCA
FACULTAD DE CIENCIAS AGROPECUARIAS
PROGRAMA DE INGENIERÍA AMBIENTAL
GIRARDOT
2016
Nota de aceptación

__

__

__

__

__

Presidente del jurado

__

Jurado

__

Jurado
DEDICATORIA

A Dios por brindarme la sabiduría y entendimiento cada día de mi vida, por ser mi guía y la luz de mi camino.

A mi madre por su dedicación y esfuerzo, por enseñarme a que los sueños son algo que se alcanzan con esmero y perseverancia.

A mi hermosa hija DANIELA quien con su alegría me impulsa cada día a ser mejor y a sobre pasar todos los obstáculos que se presentan a diario.

A mi abuela quien con su voz de aliento aumenta la fe ante los momentos de debilidad.

A mi familia Norma, Laura, Emanuel, Giovanny, Isabella y mi padre quienes siempre estuvieron ahí para apoyarme sinceramente.

A ti vida por tu apoyo incondicional, por tu paciencia y amor, Gracias por ser quien me anima a seguir adelante.

A mi compañera de trabajo de grado quien con sus conocimientos brindo aportes útiles y valiosos para el desarrollo de esta investigación.

A todos aquellos maravillosos seres que han compartido junto a mi sus enseñanzas y mis logros en estos años.

Erika.
Dedico este trabajo de grado en mi primer lugar a todas las fuerzas que me ayudan a no decaer y mantener mis pasos constantes.

A mi madre Gloria Tapia por su amor incondicional, por el apoyo que siempre me brindo y por enseñarme el valor de la vida para seguir adelante, desde acá mi total dedicación a ella.

A mi padre Ricardo Oviedo por ser el motor que me impulsa cada día y ser la motivación constante que me ha permitido mejorar con el paso de los años.

A mis hermanos Jeyson y Camilo que con sus esfuerzos y consejos me han mostrado ejemplos de perseverancia y constancia a lo largo de nuestras convivencias y a mis sobrinos Juan Esteban, Marianella y Camilo, que son el motivo de mí sonreír.

A mi abuela Paula por la paciencia y el amor que me brinda infundado me el valor de la confianza en sí mismo.

A mi compañero de vida Sebastián Pacheco quien siempre me ha brindado su apoyo sincero y ha estado presente en mis buenos y dolorosos momentos.

A mis primas, Paula, Geraldine, Laura y Luciana que han sido las sonrisas que me alegran y me ayudan a salir adelante

A mis compañeras de estudio, Dayana, Patricia, Gina y Paula, las cuales han hecho el paso de la universidad una gran oportunidad para establecer amistades con verdaderos sentimientos.

A mi Colega Erika, quien colaboro para la realización de este trabajo aportando ideas y acciones favorables.

Stefania.
AGRADECIMIENTOS

Agradecemos a nuestro tutor de Trabajo de Grado José Ever Ramírez por su tiempo y disposición.

A los profesores Miguel Ávila quien con sus conocimientos y experiencia nos guio en el proceso investigativo.

A nuestros compañeros y amigos que siempre estuvieron dispuestos a ofrecernos su ayuda y colaboración.

A la universidad de Cundinamarca y al cuerpo de docentes por brindarnos el espacio y las oportunidades de aprender cada día más.

A la Corporación Colombiana de Investigación Agropecuaria Corpoíca Nataima, por facilitar el material biológico (Vainas de Moringa) para el presente estudio.
RESUMEN .. 24
INTRODUCCIÓN .. 26
1. PLANTEAMIENTO DEL PROBLEMA .. 28
2. JUSTIFICACIÓN .. 29
3. HIPÓTESIS .. 31
4. OBJETIVOS .. 32
4.1. OBJETIVO GENERAL ... 32
4.2. OBJETIVOS ESPECÍFICOS .. 32
5. MARCO REFERENCIAL ... 33
5.1. MARCO TEÓRICO ... 33
5.1.1. METALES PESADOS ... 33
5.1.2. CADMIO, PLOMO Y COBRE .. 40
5.1.3. TÉCNICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS RESIDUALES .. 43
5.1.4. TECNOLOGÍAS CONVENCIONALES .. 43
5.1.5. ADSORCIÓN .. 46
5.1.6. BIOADSORCIÓN .. 49
5.1.7. BIOADSORVENTES ... 55
5.1.8. MODELIZACIÓN DE LOS PROCESOS DE EQUILIBRIO .. 58
5.1.9. ÁRBOL DE LA Moringa oleifera ... 60
5.2. MARCO GEOGRÁFICO ... 66
5.3. MARCO LEGAL .. 67
6. METODOLOGIA .. 69
6.1. ETAPA 1. ESTUDIO PRELIMINAR .. 70
6.2. ETAPA 2. TRABAJO DE CAMPO ... 70
6.2.1. Recolección del material vegetal y tratamiento físico de la biomasa ... 70
6.2.2. Cuantificación de Taninos en el material bioadsorbente ... 71
6.3. ETAPA 3. PRUEBAS DE LABORATORIO .. 71
6.3.1. Preparación de la solución de Cloruro de Mercurio (HgCl2) ... 71
6.3.2. Proceso de bioadsorción de iones de Mercurio (Hg^{+2}) .. 71
6.4. ETAPA 4. ANÁLISIS DE DATOS .. 73
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

LISTA DE TABLAS

Tabla 1. Características de los adsorbentes más comunes.48
Tabla 2. Algunos adsorbentes utilizados en estudios de bioadsorción......................57
Tabla 3. Capacidades de adsorción de Hg con diferentes tipos de materiales........58
Tabla 4. Taxonomía De La Especie Vegetal Moringa oleifera..................................61
Tabla 5. Características morfológicas de la Moringa oleifera.................................61
Tabla 6. Marco Legal referente a la contaminación hídrica en Colombia67
Tabla 7. Tratamientos para el proceso de Bioadsorción de iones de Hg²⁺................72
Tabla 8. Instrumentos y reactivos utilizados en el proyecto de investigación74
Tabla 9. Porcentaje de Remoción de iones de Hg²⁺ en cada tratamiento78
Tabla 10. Test de Kruskal-wallis con respecto a la biomasa80
Tabla 11. Test de Kruskal-wallis respecto al tiempo de bioadsorción.........................82
LISTA DE FIGURAS

Figura 1. Estructura química de la Lignina ... 56
Figura 2. Estructura química de la Molécula de Tanino .. 57
Figura 3. Raíz de la Moringa oleífera .. 62
Figura 4. Hojas de la Moringa oleífera .. 62
Figura 5. Flores de la Moringa oleífera ... 62
Figura 6. Tallo de la Moringa oleífera ... 62
Figura 7. Fruto de la Moringa oleífera .. 63
Figura 8. Semilla de la de la Moringa oleífera. ... 63
Figura 9. Usos potenciales de diferentes partes de la planta Moringa oleífera en la industria y producción de alimentos ... 64
Figura 10. Ubicación área de estudio ... 66
Figura 11. Procedimiento empleado en el proyecto de investigación 69
Figura 12. Procedimiento de Bioadsorción de iones de Hg\(^{2+}\) Usando Moringa oleífera como bioadsorbente ... 73
Figura 13. Porcentaje de Remoción de iones de Hg\(^{2+}\) ... 79
Figura 14. Bioadsorción de iones de Hg\(^{2+}\) respecto al tiempo 82
Figura 15. Análisis de caja y bigotes del tiempo de bioadsorción 83
LISTA DE ANEXOS

Anexo A. Protocolo de recolección de vainas especie arbórea: Moringa oleifera. 88
Anexo B. Cuantificación de taninos por el método analítico de espectrofotometría ultravioleta-visible.. 93
Anexo C. Análisis de espectrofotometría de adsorción de los iones de Hg$^{+2}$ 94
LISTA DE ABREVIATURAS

Hg Mercurio
mg Miligramo
L Litros
Kg Kilogramo
ICA Índice de calidad del agua
IDEAM Instituto de hidrología, meteorología y estudios ambientales
HgCl₂ Cloruro mercúrico
MeHg Metilmercurio
g Gramos
mL Mililitros
pH Potencial de Hidrogeno
Hg²⁺ Mercurio Inorgánico
µg Microgramos
ppm Partes por millón
Ppb Partes por billón
rpm Revoluciones por minutos
T ½ T (Tratamientos), 1 como número inicial indica la cantidad de biosorbente que se utiliza y 2 el tiempo de contacto del biosorbente con el Hg²⁺
EAA Espectrofotometría de adsorción atómica
mm Milímetros
min Minutos
GLOSARIO

ADSORBATO: Nombre que adquiere el soluto disuelto en una corriente, gas o líquida, al ser retenido sobre la superficie de un sólido adsorbente.¹

BIOMASA: Es el conjunto de materia orgánica renovable de origen vegetal, animal o procedente de la transformación natural o artificial de la misma².

BIOSORBATO: Sustancia que se concentra en la superficie o se bioadsorbe³.

BIOSORBENTE: Son materiales derivados de microorganismos, bacterias, hongos, algas marinas, plantas o algunos polímeros naturales. Los biosorbentes son capaces de adsorber especies iónicas de metales en soluciones acuosas, esta propiedad es bien utilizada en la biorremediacion y recuperación de efluentes industriales contaminados con metales pesados⁴.

BIOSORCIÓN: Término empleado para describir el fenómeno de captación pasiva, de sustancias contaminantes, basado en la propiedad que ciertos tipos de biomasas inactivas o muertas de poder enlazar y acumular diferentes tipos de contaminantes.⁵

ISOTERMA: Es la relación que existe entre la cantidad de sustancia adsorbida por un adsorbente y la presión o concentración de equilibrio a una temperatura constante.⁶

pH: Abreviatura de Potencial de Hidrogeno, se establece como la medida de la acidez o de la alcalinidad de una sustancia.⁷

REGRESIÓN LINEAL: Es una técnica que permite cuantificar la relación que puede ser observada cuando se grafica un diagrama de puntos dispersos.

⁶ Ibid, p.32.
correspondientes a dos variables, cuya tendencia general es rectilínea; esta relación se representa por una ecuación donde el mejor ajuste corresponde al valor que presenta el menor error.\(^8\)

SITIOS DE SORCIÓN: Este término es usado para describir distintas interacciones entre el sorbato y el sorbente como las interacciones intermoleculares como los del tipo enlaces de hidrógeno a través de cargas superficiales presentes en el sorbente. También la interacción puede darse por enlaces químicos debido a grupos funcionales que posee posibilitando a su vez mecanismos de intercambio iónico.\(^9\)

SORBATO: Ion o molécula que es potencialmente capaz de unirse a un sorbente.\(^10\)

SORBENTE: Material orgánico o inorgánico capaz de unir iones o moléculas.\(^11\)

\(^8\)Ibid., p. 26.
\(^10\)Mejia Gregory. Aproximación teórica a la biosorción de metales pesados por medio de microorganismos. (s.f.)
\(^11\)Ibid., p. 27.
RESUMEN

En la actualidad, la contaminación del agua por metales pesados se ha convertido en un problema ambiental en todo el mundo. Recientemente, la bioadsorción se ha propuesto como un procedimiento de tratamiento alternativo. Además, el mayor interés es la mejora de los residuos agroindustriales como materia prima para la producción de nuevos materiales. En este sentido, el objetivo de este estudio es Evaluar la capacidad de remoción de Mercurio, mediante procesos de bioadsorción, a partir del uso de vainas secas de la especie arbórea Moringa oleífera. Las vainas utilizadas fueron recolectadas centro de investigación CORPOICA Nataima, ubicado en el km 9 vía Espinal-Chicoral. Después de secado, molido y tamizado hasta un tamaño de partícula de 1 mm, se caracterizaron por Espectrofotometría Ultravioleta Visible. El potencial de las vainas de moringa para la remoción de cobre se ensayó en diferentes condiciones de pH (7), biomasa (5, 10 y 15g), concentración de metal (97 ppm), tiempo de contacto (20, 60 y 100 min) y volumen de solución (1 L). La concentración de metal residual se midió por espectrofotometría de absorción atómica (AAS). Los resultados mostraron que este biomaterial contiene taninos, que a su vez están compuestos por grupos polihidroxipolenol, adecuados para la retención de iones metálicos. La eliminación óptima de iones de Hg$^{+2}$ se puede lograr a pH 7. De acuerdo con los resultados obtenidos, las vainas de moringa tienen características para aplicaciones de remediación de iones de mercurio de aguas contaminadas a bajo costo, fácil adquisición, eco-amigable y pH relativamente neutro.

Palabras Claves: Espectrofotometría, remoción, concentración, taninos y polihidroxipolenol.
ABSTRACT

At present, the pollution of the water by heavy metals has turned into an environmental problem into the whole world. Recently, the Bio-adsorption has proposed as a procedure of alternative treatment. In addition, the major interest is the improvement of the agroindustrial residues as raw material for the production of new materials. In this respect, the aim of this study is to evaluate the capacity of removal of Mercury, by means of processes of bioadsorción, from the use of dry pods of the arboreal species *Moringa oleífera*. The used pods were gathered center of investigation CORPOICA Nataima, located in the km 9 Espinal route - Chicoral. After dried, ground and sifted up to a size of particle of 1 mm, they were characterized by Visible ultraviolet spectrophotometry. The potential of the pods of moringa for the removal of copper practised in different conditions of pH (7), biomass (5, 10 and 15g), metal concentration (97 ppm), time of contact (20, 60 and 100 min) and volume of solution (1 L). The concentration of residual metal measured up for spectrophotometry of atomic absorption (AAS). The results showed that this biomaterial contains tannins, which in turn are composed by groups Polyhydroxy-polyphenol, adapted for the retention of metallic ions. The ideal elimination of ions of Hg\(^{+2}\) can achieve to pH 7. In agreement with the obtained results, the pods of moringa have characteristics for applications of remediation of ions of mercury of waters contaminated the easy acquisition, amicable echo and pH relatively neutral.

Key words: Spectrophotometry, removal, concentration, tannins and polihidroxi-polifenol
INTRODUCCIÓN

El desarrollo de las actividades industriales y mineras implican una preocupación en la salud pública y en el medio ambiente, esto es debido a la mala disposición final de algunas sustancias tóxicas; plomo, mercurio, cadmio, arsénico, cromo, entre otros, los cuales son dirigidos a las fuentes hídricas, generando de manera exponencial el deterioro a los ecosistemas tanto terrestres como acuáticos.

Colombia no es la excepción a esta problemática, por ejemplo, en la extracción de oro artesanal que se realiza en el bajo Cauca antioqueño, se están vertiendo aproximadamente 67 ton/año de mercurio a ríos y arroyos, con los consecuentes daños que este supone a la salud y a los sistemas naturales, además de esto la OMS clasifica al mercurio como “uno de los diez productos o grupos de productos químicos que plantean especiales problemas de salud pública”.

La contaminación por metales pesados y el impacto en la salud pública, ha conducido al hombre a buscar alternativas para resolver este problema, utilizando métodos tradicionales como son: Osmosis inversa, electrodiálisis, ultrafiltración, intercambio iónico y precipitación química; pero el alto costo de los métodos convencionales llevó al desarrollo de alternativas tecnológicas, las cuales, además de aprovechar y aplicar los procesos naturales que ocurren en un ecosistema para depurar un residuo contaminante, ofrecen la posibilidad de recuperar los recursos presentes en el mismo para su posterior uso, generándose además, un valor económico que contribuye a la sostenibilidad del sistema.

Una de estas nuevas tecnologías en el proceso de biosorción el cual consiste en contacto sólido-líquido que lleva consigo ciclos de sorción y desorción del metal, es...

12 Bermeo, A. (s.f.). Medio ambiente y periodismo. Recuperado el 08 de 02 de 2017
13 ciencias de la tierra y del medio ambiente. (s.f.). Metales tóxicos.
14 Colombia Minera (2011).
la cual es usada en los procesos “limpios” de remediación ambiental, esta biotecnología es de menor costo, gracias a que se usa el material vegetal seco como biosorbente. En el presente trabajo se realizó un estudio con el fin de evaluar la remoción de mercurio, usando tres cantidades de biomasa de la *Moringa oleífera* en tres tiempos distintos, mediante el proceso de bioadsorción expuesta a un agua contaminada con Cloruro de mercurio (HgCl₂), y de este modo brindar soluciones eficientes y de bajo costo.
1. PLANTEAMIENTO DEL PROBLEMA

Actualmente las actividades humanas pocos sostenibles afectan al medio ambiente de forma directa generando emisiones contaminantes, a partir de ello se desenlanzan problemas más significativos como la contaminación de las fuentes hídricas por vertimientos de metales pesados18, este grupo se cataloga como peligroso por sus debidos procesos de intoxicación en pocas concentraciones siendo casi letal19; la degradación hídrica por motivo de sustancias tóxicas causa un macroproblema debido al escalonamiento en la cadena trófica, ejemplarizando el contacto con los peces generando bioacumulación en los tejidos nerviosos y saltando de allí a la ingesta humana20, es decir, se biomagnifica, obteniendo como resultado la nocividad en los ecosistemas y por ende en la salud de los seres humanos.

El caso particular del Mercurio, el cual es un representante de los efectos nocivos ya nombrados por los metales pesados, también se destaca por otros debido al metil-mercurio $\text{[CH}_3\text{Hg]}^+$, quien es el que desglosa las potencialidades perjudiciales de este elemento, con problemas neurológicos seguidos por padecimientos renales, cardiovasculares, reproductivos, y notables efectos en el sistema inmunológico afectando adultos y a niños, la principal exposición para que estos daños aparezcan es por medio de la ingesta de pescado, indicando que el 100\% del metil-mercurio $\text{[CH}_3\text{Hg]}^+$, presente en los pescados se absorbe gastrointestinalmente21.

Las soluciones a este tema, son los procesos rigurosos, de mayor demanda de tiempo, requerimientos de personal capacitado y de un gran capital económico, teniendo como prospecto la posibilidad o no de que sea efectivo, resaltando de una u otra forma las problemáticas del descuido de las fuentes de agua, debido a que cualquier especie basa su existencia en este recurso.

18 Eróstegui Carlos, Contaminación Por Metales Pesados, Bolivia, 2009.
19 Raiman, Ximena. et al, Mercurio en pescados y su importancia en la salud, Chile, 2014.
20 Mancera, Nestor. et al, estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de colombia, bogota, 2005.
21 Marrugo, José. Evaluación de la contaminación por metales pesados en la ciénaga La soledad y Bahía de Cispatà cuenca del bajo Sinú, departamento de Córdoba, 2011.
2. JUSTIFICACIÓN

En la actualidad, existe una gran preocupación a nivel mundial, debido al considerable incremento en los índices de contaminación de efluentes industriales por parte de metales pesados tales como el cromo, níquel, cadmio, plomo y mercurio. Estas sustancias tóxicas tienden a persistir indefinidamente en el medio ambiente, comprometiendo el bienestar y equilibrio no solo de la fauna y la flora existente en dicho ecosistema sino también la salud de las personas residentes en las comunidades aledañas, mediante su acumulación e ingreso a la cadena trófica.

Entre los diversos efectos producidos por los metales pesados en las plantas se tiene, la necrosis en las puntas de las hojas, la inhibición del crecimiento de las raíces y en el peor de los casos la muerte total de la planta. En los seres humanos los metales pesados pueden llegar a ser muy tóxicos al introducirse en el organismo. En elevadas concentraciones, estos pueden ocasionar: erupciones cutáneas, malestar de estómago (úlceras), problemas respiratorios, debilitamiento del sistema inmune, daño en los riñones e hígado, hipertensión, alteración del material genético, cáncer, alteraciones neurológicas e incluso la muerte.

Debido al impacto ambiental generado por estas sustancias tóxicas se puso a prueba la eficiencia de las vainas de la Moringa oleifera para remover mercurio; se escogió este metal puesto que la Organización Mundial de la Salud (OMS) lo clasifica como uno de los diez principales productos químicos de mayor preocupación para la salud pública. Esta investigación buscó reconocer la capacidad de bioadsorción del ión mercurio a tres diferentes tiempos (20, 60 y 100 min) de contacto con tres cantidades de biomasa de la Moringa oleifera (5, 10 y 15 g), expuesta a una agua contaminada con Cloruro de Mercurio al 100%.

22 Ciencias De La Tierra Y Del Medio Ambiente. (s.f.). Metales tóxicos.
obteniendo una concentración inicial de [97 ppm], puesto Hidalgo, 200426, afirma que con una concentración menor de 100 ppm es posible realizar un proceso de bioadsorción y de este modo encontrar que biomasa en que tiempo remueve eficientemente los iones de mercurio y de este modo obtener datos en la remoción de mercurio aprovechando la tecnología de la bioadsorción ya que es una técnica de bajo costo y de fácil implementación para cumplir con los parámetros exigidos por la normatividad colombiana vigente.

26 Hidalgo, Soraya. 2004. Reutilización de residuos de rapa para la eliminación de metales tóxicos en efluentes líquidos.
3. HIPÓTESIS

La siguiente fue la hipótesis planteada en esta investigación:

H_0: Confirmar si las vainas de *Moringa oleífera* presentan capacidades de bioadsorción de iones de mercurio a una concentración de 97 ppm con tres tiempos y tres cantidades de biomasa.
4. OBJETIVOS

4.1. OBJETIVO GENERAL

Evaluar la capacidad de remoción de Mercurio, mediante procesos de bioadsorción, a partir del uso de vainas secas de la especie arbórea Moringa oleífera.

4.2. OBJETIVOS ESPECÍFICOS

- Establecer el porcentaje de remoción del mercurio con diferentes cantidades de biomasa de vainas de Moringa oleífera
- Determinar el tiempo óptimo donde se alcance la mayor retención del mercurio.
- Comprobar la cantidad de mercurio retenido aplicando la isoterma de Langmuir.
5. MARCO REFERENCIAL

5.1. MARCO TEÓRICO

El análisis de la capacidad de adsorción de metales pesados y otros compuestos contaminantes por materiales naturales requiere abarcar el conocimiento de diferentes áreas que van desde la química del propio metal objeto de estudio, las propiedades del adsorbente y sus características estructurales, hasta el estudio de los parámetros que definen la interacción entre ambos. Así, a lo largo de esta sección, se hará una revisión de los aspectos fundamentales de este tema comenzando por los metales pesados y sus propiedades químicas, su toxicidad y sus principales fuentes de contaminación ambiental, así como las tecnologías más utilizadas para eliminarlos; con especial atención a las características del mercurio.

5.1.1. METALES PESADOS

Entre los elementos químicos conocidos, existen en torno a 80 metales que pueden dividirse en dos grupos: los que son esenciales para la vida (como el hierro o el calcio) o aquellos que no son esenciales y presentan elevada toxicidad (como el plomo y el cadmio). Estos metales tóxicos no se degradan por vía metabólica y su acumulación en tejidos vivos causa serios daños en la salud. Además, la descarga y elevada concentración en aguas naturales hace que puedan circular a través de la cadena alimentaria. Estos elementos pueden entrar en el medioambiente por procesos naturales o antropogénicos. La contaminación derivada de procesos antropogénicos puede dar lugar a concentraciones locales elevadas de dichos compuestos, originando efectos nocivos en animales y en seres humanos.

Muchos elementos metálicos juegan un papel esencial en los organismos vivos ya que constituyen un requerimiento nutricional, pero un exceso de estos elementos y

sobre todo su substitución por aquellos compuestos no esenciales, puede dar lugar a intoxicaciones o incluso la muerte de los organismos. Los seres humanos reciben las dosis necesarias de estos elementos traza a través de la cadena alimentaria. La asimilación de metales tiene lugar en las plantas o a nivel microbiano, y los elementos tienden a concentrarse al ascender en la cadena alimentaria, por lo que cantidades excesivas que aumentan al avanzar a lo largo del ciclo alimentario puede derivar en problemas directos en la salud humana28. Este fenómeno de incremento de concentración de los metales en cada nivel de la cadena alimentaria se conoce como bio-magnificación29.

Los metales pesados se utilizan en muchos procesos industriales debido a su importancia tecnológica. En las últimas décadas, el rápido desarrollo de actividades como la minería, utilización de galvanizados, industrias de fertilizantes, empleo de baterías, industria del papel y pesticidas, ha elevado las descargas indirectas o directas de aguas residuales con elevado contenido en metales pesados. Los residuos provenientes de estos procesos deben ser convenientemente tratados para evitar la contaminación medioambiental y los efectos en el organismo de las especies vivas30.

Algunos de los metales pesados tóxicos de mayor importancia en el tratamiento de aguas residuales son el zinc, cobre, níquel, cadmio, plomo, cromo y mercurio. Como se ha descrito en la introducción, este trabajo se centra principalmente en el mercurio y su eliminación en aguas contaminadas.

5.1.1.1. MERCURIO

El mercurio es un metal denso y de color blanco plateado que funde a -38.9°C. Sobre la superficie terrestre está presente en una concentración media de 0.08

29Cuizamo, Norma Y Navarro, Abel. Biosorción de metales pesados por algas marinas: posible solución a la contaminación a bajas concentraciones, 2013.
30Febriato, J. Equilibrio y estudios cinéticos de adsorción de metales pesados utilizando biosorbente: Un resumen de los estudios recientes, 2009.
mg·kg. Las rocas ígneas, metamórficas y sedimentarias contienen mercurio en concentraciones superiores a 0.25, 0.40 y 3.25 mg/kg, respectivamente31.

El mercurio en el medio acuático existe esencialmente en tres formas: mercurio elemental, Hg0 ; mercurio inorgánico, como ion divalente Hg+2, que puede aparecer hidratado o completado con cloruro, sulfuro, hidróxido o con materia orgánica disuelta32 y mercurio orgánico, principalmente como monometil mercurio que es la especie más nociva para la salud humana33. Su toxicidad se relaciona con la elevada biomagnificación a través de la cadena alimentaria (por encima de 106) y por su gran liposolubilidad34. Con una solubilidad de 0.08 mg/L a 25°C, el Hg0 es un componente común en las aguas naturales, se encuentra en las profundidades del océano y habitualmente está supersaturado, especialmente en aguas superficiales y en las capas medias constituye cerca del 50% del mercurio total35.

5.1.1.1. Reducción del Mercurio

Cuando se estudia la química del mercurio en disolución, es fundamental considerar la importancia de las reacciones de reducción de este metal. Estas reacciones dependen directamente de las condiciones del medio y de la presencia de sustancias orgánicas que favorezcan el proceso redox.

En el medio natural la reducción de Hg+2 a Hg0 se puede iniciar principalmente por microorganismos, por fotólisis directa o por sustancias húmicas. La reducción fotoquímica tiene lugar en aguas superficiales en presencia de oxígeno o a través de microorganismos y particulado mineral en medios anóxicos36.

31 Ibid. p.12.
32 Leopold, K. et al. Los métodos para la determinación y especiación del mercurio en las aguas naturales, 2010.
33 Merian, E. and Clarkson, T. W. Metals and their compounds in the environment: occurrence, analysis, and biological relevance, 1991.
34 Gao, Y. et al. Determinación y especiación de mercurio en muestras ambientales y biológicas mediante espectrometría atómica analítica, 2012.
36 Ibid, p. 65.
36 Zheng, W., Liang L.Y., Gu B.H. Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments. 2012.
La materia orgánica disuelta que se encuentra en el medio acuático enlaza fuertemente a los metales, afectando a su especiación, solubilidad, movilidad y toxicidad y en particular, interacciona con el mercurio de formas diferentes y modifica su transporte, transformación y biodisponibilidad.

En el medio acuático, el 80% de la materia orgánica disuelta está formada por sustancias húmicas, una mezcla compleja que proviene de residuos de la descomposición de animales y plantas. El mercurio y otros metales traza están generalmente enlazados a los grupos ácidos de la materia orgánica; siendo los más abundantes los ácidos carboxílicos y los fenoles. Las fracciones de ácidos fúlvicos y húmicos en la materia orgánica son capaces de reducir el mercurio iónico a mercurio metálico. Asimismo, la disponibilidad de mercurio puede disminuir para los procesos de metilación gracias a que la materia orgánica mejora la reducción fotoquímica de Hg$^{+2}$ a Hg0.

Algunos estudios demuestran que en ambientes anóxicos, la materia orgánica reducida no sólo es capaz de llevar a cabo la reducción del mercurio sino que también reacciona con el Hg0 para formar complejos Hg-mercurio orgánico38. Las sustancias húmicas acuáticas tienen una elevada capacidad de complejación de metales, debido principalmente a la presencia de grupos 16. Revisión bibliográfica carboxílicos; además, la presencia de grupos sulfuro en las sustancias húmicas hace que se formen complejos estables con el mercurio. En aguas naturales, la especiación de este metal está gobernada por los complejos Hg-ácidos húmicos.39

Se ha comprobado que la presencia de iones que compiten con el metal, como el Cl$^{-}$ que forma complejos con el mercurio o el europio que a su vez se compleja con los ácidos fúlvicos presentes en el medio, puede inhibir la reducción del Hg$^{+2}$.

39 Allard, B. Abiotic Reduction of Mercury by Humic Substances in Aquatic System. An important process for the mercury cycle. 1991.
40 Allard, B. Abiotic Reduction of Mercury by Humic Substances in Aquatic System. An important process for the mercury cycle. 1991.
5.1.1.1.2. Fuentes de Mercurio

El mercurio puede entrar en el medioambiente a través de diferentes fuentes que individualmente no contribuyen en exceso a la toxicidad del metal, pero el efecto global puede ser importante. Las fuentes de mercurio se podrían agrupar en naturales, antropogénicas y reemisiones.

Las principales fuentes de contaminación en el agua son:

- **Deposiciones atmosféricas.** El mercurio se encuentra principalmente en estado gaseoso y por su elevada volatilidad puede permanecer en la atmósfera más de un año. Otra fracción de este metal se encuentra formando parte del particulado atmosférico. Además, debido a los procesos de oxidación atmosféricos, el Hg0 pasa a Hg$^{+2}$ que tiende a precipitar sobre la superficie terrestre.

- **Fuentes derivadas de la erosión.** Los procesos erosivos naturales o derivados de la actividad humana provocan contaminación de depósitos acuáticos adyacentes a suelos contaminados.

- **Fuentes urbanas.** La alteración del ciclo del mercurio por actividades humanas incrementa la presencia del metal en el medio.

- **Fuentes agrícolas.** Aunque en la actualidad están restringidos, los pesticidas y fungicidas con contenido en mercurio fueron usados en agricultura durante un largo periodo de tiempo y debido a la persistencia del metal en el medioambiente todavía existen hoy en día problemas de contaminación por su uso masivo en el pasado.

- **Fuentes mineras.** Incluye minas de plata, oro, mercurio y plomo.

- **Procesos industriales y combustión.** El mercurio de las combustiones va a la atmósfera depositándose más tarde en la superficie terrestre y en las aguas o permaneciendo en la atmósfera pasando a formar parte del ciclo del metal. Las plantas químicas son el principal foco de contaminación industrial. Cabe destacar

las aguas residuales de blanqueo de pasta de papel, donde se lleva en cabo la electrolisis en celdas de mercurio, así como contribuciones de industrias de refinado de petróleo, plásticos o baterías\(^{42}\).

5.1.1.1.3. Toxicidad

La elevada toxicidad del mercurio ya se conocía en la época romana y el antiguo oriente; sin embargo, los primeros casos de intoxicación por este metal no se registraron hasta los siglos XVIII y XIX.

El uso del mercurio está cada vez más restringido y controlado, pero tanto el metal como sus compuestos se siguen empleando en preparaciones dentales, termómetros, lámparas fluorescentes y ultravioleta y en productos farmacéuticos, como fungicidas en pinturas, aguas de procesos industriales y revestimiento de semillas. La industria del papel también consume grandes cantidades de este metal como fenil acetato de mercurio, un fungicida, así como en sosa caustica, que puede contener más de 5 mg·kg\(^{-1}\) de impurezas\(^{43}\). A lo largo de la historia, este metal se ha utilizado ampliamente con fines terapéuticos, tratándose con él casos de sífilis, empleándose el HgCl\(_2\) como antiséptico y llegando incluso a servir como diurético a principios del siglo XX. Pero su elevada toxicidad, hizo que se eliminase esta aplicación del metal\(^{44}\). El mercurio puede causar efectos adversos sobre el sistema nervioso central, afectar a la función renal y causar alteraciones cromosómicas. También puede causar ceguera, parálisis o daños en el feto. El envenenamiento por mercurio es difícil de detectar debido a su carácter acumulativo, sus efectos no son inmediatos y muchos de los síntomas tienen un origen psicopatológico\(^{45}\).

\(^{43}\)Ibid, p. 33.
La apariencia, carácter y extensión de la toxicidad dependen de un gran número de factores: la forma química, el compuesto de mercurio y su potencial de ionización, la dosis, la duración de la exposición y la ruta de administración.

Su absorción como mercurio metálico a través de la ingesta es despreciable. En humanos, la ingestión accidental de mercurio metálico aumenta los niveles de mercurio en sangre, pero sólo en algunos casos estas dosis pueden causar enfermedades clínicas. Las sales solubles de Hg$^{+2}$ se absorben poco y las pocas sales solubles de Hg$^{+1}$ se absorben todavía menos que las anteriores. Sin embargo, el mercurio orgánico es rápidamente absorbido en humanos, con valores del 95% de absorción. La absorción depende del tamaño de partícula, solubilidad y del grado de descomposición de las sales en los fluidos biológicos46.

Uno de los episodios más destacados de contaminación por este metal fue el de la bahía de Minamata (Japón), dónde en el periodo de 1953 a 1960 se dieron 111 casos de envenenamiento por mercurio y 43 muertes entre la gente que había consumido pescado procedentes de la bahía. La contaminación se debía a vertidos procedentes de una planta química. Los daños causados afectaron también a niños cuyas madres habían consumido este pescado durante el embarazo. Otro episodio de envenenamiento por mercurio tuvo lugar en Iraq en 1972, dónde se consumió grano tratado con fungicidas que contenían mercurio orgánico47.

La Agencia Americana de Protección Medioambiental (EPA) ha estimado concentraciones de mercurio en aire de 5·10$^{-6}$ mg·m$^{-3}$ en zonas rurales y de 3·10$^{-5}$ en zonas urbanas. Las concentraciones del metal en aguas potables y superficiales se encuentran habitualmente por debajo de 0.001 mg·L$^{-1}$, si se supera este nivel es debido a efluentes industriales48.

Actualmente, la Organización Mundial de la Salud (OMS) recomienda una dosis máxima de metilmercurio de 1.6 µg·kg⁻¹ por semana; mientras que la EPA y el Consejo Nacional de Investigación (NRC) toman como referencia una dosis de 0.1 µg·kg⁻¹ de peso corporal de un adulto y por día. La Directiva Europea de aguas clasifica el mercurio y sus compuestos como sustancias de riesgo e indica como valores máximos permitidos 0.07 µg·L⁻¹ en aguas superficiales.

Para la eliminación de metales pesados de disoluciones acuosas, así como para la eliminación de compuestos orgánicos, se han aplicado tecnologías como la precipitación química, procesos de oxidación/reducción, separación sólido-líquido, tecnologías de membrana o procesos de intercambio iónico. Unas de las nuevas tecnologías para la eliminación de metales pesados es la biosorción.

5.1.2. CADMIO, PLOMO Y COBRE

El cadmio es un metal de color blanco plateado, blando y dúctil y que tiene una presión de vapor relativamente elevada. Se encuentra casi siempre como catión divalente, puede aparecer asociado a minas de zinc, por presentar una química similar a este metal, y aparece también en depósitos naturales o minas que contienen otros elementos. Su distribución en la corteza terrestre no es uniforme y la media de concentración se sitúa entre 0.15 y 0.2 mg·kg⁻¹. Se encuentra en la naturaleza formando compuestos inorgánicos y acomplejado por agentes quelatantes naturales; los compuestos orgánicos de cadmio son extremadamente inestables y no se detectan en el medioambiente.

Su principal uso es en galvanizados, pigmentos de pintura, plásticos, baterías y recubrimientos. La contaminación por cadmio en aguas naturales deriva principalmente de la industria de galvanizado, así como de su uso en baterías.

Es un elemento altamente tóxico para el ser humano y se considera no esencial para los organismos vivos, pudiendo causar serios daños, afectando principalmente al hígado y los huesos. Fue clasificado por la EPA como un potencial agente carcinogénico. Está asociado a la enfermedad conocida como “Itai-Itai”, que hace que los huesos se debiliten causando múltiples fracturas. La adsorción de cadmio tiene lugar principalmente a través del riñón e hígado, órganos donde mayoritariamente se acumula. La OMS recomienda una dosis máxima de 0.4-0.5 mg/semana y los máximos admisibles en agua se sitúan en 5 µg·L⁻¹.

El plomo es el metal pesado más común. Es un metal blando, que resiste la corrosión y con punto de fusión a 327°C. Es importante tener en cuenta sus niveles en aguas potables, ya que el plomo se ha usado universalmente en tuberías y en soldaduras en sistemas de distribución de aguas. Sin embargo, la principal fuente de contaminación del metal al medio ambiente derivaba de emisiones atmosféricas que provenían de los escapes de los vehículos. Con la introducción de la gasolina sin plomo, estas emisiones han descendido.

En el medioambiente acuático se encuentra principalmente como plomo inorgánico divalent. Puede también existir como catión tetravalente y hay evidencias de que determinadas bacterias pueden llevar a cabo la metilación del plomo inorgánico, lo que significa que el plomo presente en suelos o sedimentos puede ser distribuido en el medioambiente en una forma más tóxica que el metal inorgánico. La solubilidad de los compuestos de plomo es función del pH, dureza, salinidad y de la presencia de compuestos húmicos.

El plomo se utiliza en acumuladores eléctricos y baterías, en construcción, en recubrimiento de cables y en munición; además también se empleaba como aditivo en gasolinas, pero esta aplicación ha ido decayendo paulatinamente. Tanto su presencia en tuberías o sistemas de distribución de agua, como su uso en

diferentes actividades industriales, hace que pueda estar presente en agua potable, en alimentos o en el medioambiente.

La toxicidad de este metal es altamente conocida y estudiada. El plomo puede ser absorbido por inhalación, ingestión, contacto dérmico o transferido por la placenta. Los síntomas iniciales de intoxicación por plomo se relacionan con trastornos psíquicos, puesto que afecta al sistema nervioso central. Afecta también al hígado, riñón y sistema reproductivo. Uno de los problemas más destacados de este metal es su capacidad para sustituir el calcio de los huesos y acumularse permaneciendo como una reserva en el organismo56. Los niveles permitidos en la actualidad por la EPA y OMS para plomo en aguas potables se sitúan en 0.05 mg·L\(^{-1}\) y 10 µg·L\(^{-1}\), respectivamente57.

Plomo, cadmio y mercurio son los tres metales pesados que constituyen un mayor riesgo para el ser humano y el medioambiente58.

El cobre es un metal rojo que aparece en la naturaleza principalmente como compuestos de Cu(I) y Cu(II), que presentan propiedades muy distintas al metal. Una de las mayores aplicaciones es su utilización como conductor, ya que, además de la plata, el cobre es el elemento que presenta mejores propiedades para conducir el calor y la electricidad. También se emplea cobre en tuberías, utensilios de cocina, en material químico y farmacéutico y como pigmento59.

Se trata de un elemento esencial para el ser humano, sin embargo, grandes dosis pueden resultar extremadamente tóxicas para los organismos vivos. Algunas evidencias indican que incluso puede ser un elemento carcinogénico. Puede causar daños a la fauna acuática y es fitotóxico60.

57 Ibid, p. 23.
Una acumulación de cobre en los tejidos puede dar lugar a la enfermedad de Wilson, que es hereditaria y que afecta al sistema neurológico, a la vista y al hígado61.

5.1.3. TÉCNICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS RESIDUALES

La creciente presencia de contaminantes en el medio acuático, así como su elevada toxicidad, previamente analizada, hace necesaria la búsqueda y el desarrollo de técnicas que permitan eliminar estos compuestos de forma eficaz, económica y que al mismo tiempo hagan posible alcanzar los estándares sanitarios permitidos.

5.1.4. TECNOLOGÍAS CONVENCIONALES

Para la eliminación de metales pesados de disoluciones acuosas, así como para la eliminación de compuestos orgánicos, se han aplicado tecnologías como la precipitación química, procesos de oxidación/reducción, separación sólido-líquido, tecnologías de membrana o procesos de intercambio iónico62. Cada una de estas técnicas presenta diferentes ventajas y limitaciones que se exponen a continuación:

5.1.4.1. Precipitación química

Es una técnica muy efectiva y ha sido la más aplicada para eliminación de metales al tratarse de una tecnología sencilla y barata. Las especies metálicas se precipitan variando el pH del medio, normalmente por adición de algún compuesto químico, quedando, así como residuo un lodo cargado con el metal que se puede separar por sedimentación o filtración. Las precipitaciones químicas más utilizadas son las que implican formación de un hidróxido o un sulfuro63.

61 Ibid, p. 56.
63 Ibid, p. 44.
Las principales desventajas de esta técnica residen en la necesidad de añadir compuestos químicos de forma precisa, la eliminación del metal no siempre alcanza los mínimos requeridos por las regulaciones medioambientales y es necesario tratar el lodo cargado de metales obtenido como residuo64.

Esta tecnología también se ha desarrollado combinada con otras como la nanofiltración o el intercambio iónico para mejorar su eficacia65.

5.1.4.2. **Intercambio iónico**

Al igual que la precipitación química, el intercambio iónico es una técnica efectiva, presenta una elevada capacidad de tratamiento de residuos y una cinética rápida; sin embargo no es muy utilizada especialmente a gran escala por tratarse de una técnica cara66.

Los intercambiadores iónicos son sustancias granulares que presentan en su estructura molecular radicales ácidos o básicos que pueden intercambiar los iones negativos o positivos fijados en estos radicales por iones del mismo signo en la disolución en contacto con ellos. Las resinas iónicas son polímeros insolubles con grupos químicos activos. Las más comunes son las que tienen grupos ácido sulfónico (-SO$_3$H) y grupos ácido carboxílico (-COOH)67.

En los últimos tiempos se han estudiado algunos minerales naturales, como las zeolitas, que actúan como buenos intercambiadores de metales pesados, sin embargo sus capacidades son inferiores a las resinas sintéticas y hasta ahora se aplican tan sólo a escala de laboratorio68.

5.1.4.3. **Filtración con membrana**

Diferentes tipos de membrana presentan elevadas capacidades de retención de metales pesados. La filtración es una técnica fácil a nivel operacional y requiere

64 Lodeiro, P. et al. Aspectos termodinámicos y cinéticos en la biosorción de cadmio en materiales de bajo costo 2006.
66 Volesky, B. and Holan, Z. R. Biosorption of heavy metals. 1995.
poco espacio. Dentro de la filtración con membrana se engloban la ultrafiltración, la ósmosis inversa, nanofiltración y la electrodiálisis69.

Los inconvenientes relacionados con las técnicas de membrana se asocian a la sensibilidad de la membrana, que puede dejar pasar diferentes tipos de compuestos. Además el proceso puede encarecerse, como en el caso de la ósmosis inversa, por la necesidad de utilizar presiones elevadas70.

5.1.4.4. Coagulación y floculación

La coagulación es la desestabilización de coloides por neutralización de las fuerzas que los mantienen separados, es una de las técnicas más utilizadas, pero principalmente se aplica a los coloides hidrófobos y a las partículas en suspensión. Por su parte, la floculación es la acción de los polímeros de formar puentes entre los flóculos (entendidos como agregación de sólidos en suspensión en el medio líquido) y unir las partículas en grandes aglomerados. Una vez separadas en grandes grupos se pueden eliminar del medio por filtración o flotación. Generalmente coagulación y floculación no permiten tratar todos los metales pesados en aguas residuales por lo que requieren de la utilización de otra técnica acoplada para completar el proceso71.

5.1.4.5. Tratamiento electroquímico

Los procesos electroquímicos implican la aplicación de un potencial para mover partículas iónicas cargadas en disolución de un medio a otro. Esta técnica conlleva la deposición de los iones metálicos en la superficie de un cátodo y permite recuperar los metales en su estado fundamental. Los metales pueden ser eliminados de forma selectiva variando el potencial eléctrico aplicado. No ha sido muy utilizada en procesos de eliminación de contaminantes por tratarse de un método caro. En algunos casos, con esta tecnología tampoco se alcanzan los

niveles requeridos de eliminación del metal debido a la baja velocidad de transferencia de masa de los iones que migran en disolución72.

5.1.4.6. Oxidación-Reducción

Las reacciones de oxidación-reducción se usan en el tratamiento de aguas contaminadas con metales para transformar un estado de oxidación del metal en el que está disuelto en otro estado de oxidación que permita su eliminación como precipitado. El control del pH es determinante para llevar a cabo esta técnica73.

5.1.5. ADSORCIÓN

La palabra “sorción” se emplea para describir los diferentes mecanismos de captura de una sustancia por superficies externas de sólidos y líquidos, así como en la superficie interna de sólidos porosos o líquidos. Dependiendo del tipo de enlace, la sorción puede ser física (fisisorción), química (quimisorción) o electrostática (intercambio iónico). En la fisisorción no hay intercambio de electrones, el adsorbato o soluto es retenido débilmente en la superficie debido a las fuerzas de Van der Waals y se pueden formar varias capas con aproximadamente el mismo calor de adsorción, por lo tanto el proceso solo es estable a temperaturas menores de 150°C; por el contrario, la quimisorción implica un intercambio de electrones entre el soluto y sitios específicos de la superficie del líquido o sólido, formando un enlace químico más fuerte y estable a altas temperaturas74. Para terminar, el intercambio iónico envuelve las fuerzas atractivas de Coulomb entre los iones de la solución y los grupos funcionales del material adsorbente, estos últimos presentan iones de la misma carga que los contenidos en la fase líquida, de tal forma que son capaces de ser intercambiados75. Sin embargo, Dávila Guzmán (2012)76 afirma que la mayor parte

72 Ibid, p. 97.
73 Ibid, p. 42.
74 Inglezakis & Poulopoulos. Adsorción, intercambio iónico y Catálisis. 2006.
75 Dávila Guzmán. Caracterización del proceso de biosorción de metales pesados mediante residuos sólidos de café. 2012.
76 Ibid, p. 76.
de los fenómenos de adsorción son combinaciones de las tres formas anteriormente mencionadas, por lo cual no es fácil distinguir entre ellos.

Es importante aclarar que el término “adsorción” hace referencia también a un fenómeno superficial, sin embargo los átomos, iones o moléculas (adsorbato o soluto) son retenidos solamente en materiales sólidos porosos (adsorbente), separándolos de la fase líquida o gaseosa en que se encontraban inicialmente. En consecuencia, la capacidad de adsorción de un adsorbente está determinada por el número total de poros, su forma y tamaño.

Uno de los materiales adsorbentes más utilizados es el carbón activado siendo ideal debido a su gran área superficial por unidad de peso, la cual va de 300 a 1500 m²/g dependiendo del insumo con que se hizo el carbón activado. (Ver tabla 1). Existen además, otros materiales que se emplean comúnmente como adsorbentes como la sílica gel, la alumina, la zeolita, cuyas características se encuentran resumidas en la tabla 1. No obstante, se requiere de un alto costo de operación y mantenimiento, por lo cual en los últimos años se ha estado investigando procesos de adsorción con otros materiales de menor costo como el quitosan, la turba, las cenizas volantes y los residuos lignocelulósicos.

78 Inglezakis & Poulopoulos, Adsorción, intercambio iónico y Catálisis 2006.
79 Tchobanoglous, Burton, & Stensel. Residuos de Ingeniería: Tratamiento y reutilización. 2003
80 Babel, S., & Kurniawan, T. A. Adsorbentes de bajo costo para los metales pesados absorción por el agua contaminada: una revisión. 2003.
Tabla 1. Características de los adsorbentes más comunes.

<table>
<thead>
<tr>
<th>Adsorbente</th>
<th>Propiedades físicas</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Área superficial (m²/g)</td>
<td>Densidad aparente (g/cm³)</td>
<td>Capacidad de adsorción (g/g)</td>
</tr>
<tr>
<td>Carbón activado</td>
<td>300-1800</td>
<td>250-700</td>
<td>0.3-0.7</td>
</tr>
<tr>
<td>Alumina activada</td>
<td>200-400</td>
<td>700-930</td>
<td>0.1-0.33</td>
</tr>
<tr>
<td>Silica gel</td>
<td>300-850</td>
<td>700-820</td>
<td>0.35-0.50</td>
</tr>
<tr>
<td>Zeolitas</td>
<td>600-700</td>
<td>580-680</td>
<td>0.21-0.36</td>
</tr>
</tbody>
</table>

Fuente. Inglezakis & Poulopoulos, 2006; Modificada por autores, 2016.
5.1.6. BIOADSORCIÓN

La bioadsorción es una interacción física indirecta entre iones y componentes celulares ya sea de organismos vivos o muertos como microorganismos, hongos, levaduras, algas, residuos vegetales, entre otros. Por lo tanto, el proceso de bioadsorción involucra una fase sólida (bioadsorbente) y una fase líquida (solvente, que es normalmente el agua) que contiene las especies disueltas que van a ser sorbidas (adsorbato, iones metálicos). Debido a la gran afinidad del adsorbente por las especies del adsorbato, este último es atraído hacia el sólido y enlazado por diferentes mecanismos. Este proceso continúa hasta que se establece un equilibrio entre el adsorbato disuelto y el adsorbato enlazado al sólido.

La aplicación de esta tecnología se ha estudiado ampliamente como solución alternativa para el tratamiento de aguas contaminadas con metales pesados, siendo capaz de disminuir su concentración en disoluciones a niveles de ppb (μg/L).

En los últimos años se ha diversificado la utilización de biomasa muerta o productos derivados de ella, como los residuos vegetales, ya que además de eliminar el problema de la toxicidad, presenta ventajas económicas, tanto de mantenimiento como evitando el suplemento de nutrientes. Sin embargo, las aguas residuales contienen varios metales disueltos, lo que produce competitividad entre los iones por los sitios activos presentes en la estructura del bioadsorbente; no obstante, cada material es afín a diferentes iones y esta selectividad puede ser potenciada o modificada con determinados tratamientos.

81 Murithi G. L. The water Hyacinth Eichhornia crassipes (mart) solms as a biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium 2010.
82 Andrango Caizapanta. Estudio Isotérmico de Biosorción de cromo y cadmio en solución acuosa utilizando residuos de césped.2011.
83 Cañizares-Villanueva R. Biosorción de metales pesados mediante el uso de biomasa microbiana. 2000.
5.1.6.1. Factores que afectan al proceso de bioadsorción

5.1.6.1.1. Influencia del Potencial de Hidrogeno pH

El pH es uno de los factores clave en el proceso de adsorción. Describir el efecto del pH requiere entender la química en disolución. Existen tres maneras básicas en las que este parámetro influye en la capacidad de adsorción: el estado de los sitios activos de la biomasa varía con el pH del medio, haciéndolos más o menos disponibles para el enlace con los compuestos en disolución; valores de pH extremos pueden dañar la estructura del material y es fundamental la especiación y solubilidad del metal en disolución que son factores que dependen directamente del pH\(^\text{84}\).

Entre los grupos funcionales más comunes en los adsorbentes naturales se encuentran grupos como el hidroxilo, carboxilo, sulfhidrilo, etc. Un cambio en el pH de la disolución cambia el estado de estos grupos y modifica la interacción con los contaminantes. Así, a pH bajos la superficie del material puede cargarse positivamente inhibiendo la aproximación de los cationes metálicos u otros contaminantes cargados positivamente; por el contrario, valores de pH muy altos suelen dar problemas de precipitación del metal. Por lo tanto, de forma general, pHs entre 4-7 suelen ser los óptimos para llevar a cabo el proceso de adsorción, especialmente con cationes metálicos, en ese intervalo la desprotonación de los grupos funcionales favorece la atracción de las especies con carga positiva; mientras que la adsorción de aniones suele ser más favorable a pH bajos\(^\text{85}\).

5.1.6.1.2. Temperatura

Este parámetro puede afectar directamente a la interacción entre soluto y adsorbente, si bien en un rango limitado de temperaturas la adsorción puede mantenerse constante. Este hecho indica que, en parte, la eliminación de un

\(^{84}\) Chojnacka, K. Biosorption and bioaccumulation - the prospects for practical applications, 2010.
compuesto determinado puede estar regida por un mecanismo de intercambio iónico, ya que este proceso no se ve afectado por la temperatura86.

El estudio de la temperatura se lleva a cabo a través de las isotermas de adsorción. Estos modelos permiten obtener las constantes de equilibrio adsorbente/adsorbato y esto es clave para determinar otros datos de la termodinámica del proceso, como la entalpía, entropía o energía libre.

De forma general, se ha demostrado que la influencia de la temperatura en la capacidad de adsorción es baja y el proceso apenas varía al variar este parámetro. En algunos casos se han registrado mejores capacidades de adsorción con el aumento de la temperatura, lo que sugiere un proceso endotérmico; esta tendencia indica que al aumentar este parámetro hay un mayor número de sitios activos que participan en el enlace con el compuesto o que existe una mayor afinidad adsorbente/adsorbato. Sin embargo, en otros casos, al aumentar la temperatura se puede ver afectada o dañada la estructura del material, disminuyendo la adsorción87.

5.1.6.1.3. Tiempo de contacto

En todo estudio de bioadsorción es necesario conocer el tiempo de equilibrio entre el soluto y el material. Este tiempo necesario para que se complete el proceso de adsorción es determinante para desarrollar los demás estudios y optimizar el proceso, además del interés que tiene en sí mismo el conocimiento de la cinética del proceso de eliminación. El tiempo de reacción también puede depender de otras condiciones experimentales, como la concentración del contaminante o la dosis de adsorbente.

86 Ibid, p. 33.
87 Ibid, p. 53.
Habitualmente, los procesos de adsorción metal o compuesto orgánico/biomasa tienen tiempos cortos, llegándose al equilibrio en unas pocas horas88 e incluso minutos89.

5.1.6.1.4. Características del adsorbente

Uno de los factores clave en los procesos de adsorción son las características físicas y químicas del propio adsorbente. Por un lado, el tipo y cantidad de grupos funcionales que presenta en su estructura, la disponibilidad de los mismos, el estado químico en el que se encuentran y la afinidad entre el sitio y el metal90.

Por otro lado, las características físicas del material como el tamaño de poro y partícula, así como la etapa de crecimiento alcanzado en el momento de recolectar la biomasa para su uso como adsorbente o diferentes orígenes del mismo material pueden afectar también al proceso de adsorción. Con el fin de determinar estas características del material (estructura y composición) se llevan a cabo los estudios de caracterización de la biomasa.

El pretratamiento del material es clave para su posterior utilización, pudiendo afectar a las capacidades de enlace91. En algunos casos se trata de un pretratamiento sencillo (lavado, secado y triturado); pero en otros casos se aplican pequeñas modificaciones químicas de la biomasa con el fin de mejorar su capacidad de eliminación del compuesto. En ocasiones, la etapa de pretratamiento puede incluir un proceso de inmovilización del material sobre un soporte sólido o encapsulándolo en una matriz inorgánica. Tanto algunas modificaciones químicas, como la inmovilización de la biomasa, se llevan a cabo para mejorar las capacidades mecánicas del material, especialmente en procesos en continuo y si es posible, aumentar su eficacia como adsorbente.

89 Herrero, R., et al. La eficiencia del alga roja \textit{Mastocarpus stellatus} para la remediación de la contaminación de cadmio.2008.
90 Volesky, B. Sorption and biosorption. 2003.
91 Gadd, G.M. Biosorción: revisión crítica de la razón científica, la importancia del medio ambiente y la importancia para el tratamiento de la contaminación.2009.
5.1.6.2. ETAPAS DEL PROCESO DE BIOADSORCIÓN

Un estudio completo de bioadsorción se compone de los siguientes procesos:

- Muestreo de materiales inicial que permita seleccionar aquellos que presenten mejores eficacias de eliminación del contaminante
- Caracterización de los materiales utilizados. Determinación de los principales grupos funcionales presentes en su estructura y su posible implicación en el proceso de eliminación del metal o compuesto orgánico
- Estudio y control de los parámetros físico-químicos que intervienen en el proceso:
 - El tiempo de equilibrio: estudios cinéticos y empleo de modelos que ajusten los resultados y permitan interpretar de forma clara los datos experimentales
 - pH del medio. Se selecciona el pH al cual la eliminación es óptima
 - Fuerza iónica. Se estudia la influencia que la salinidad de la disolución tiene sobre la eliminación del compuesto
 - Temperatura y concentración. Estudio del equilibrio y modelización a través de las isotermas de adsorción
- Competición con otras especies en el medio; metales pesados o compuestos orgánicos.
- Estudio del proceso en continuo
- Desorción y regeneración del material utilizado
- Modificaciones e inmovilizaciones de la biomasa que mejoren el proceso, tanto desde el punto de vista de la mejora de la estabilidad mecánica del material como para obtener mayores capacidades de adsorción.

A lo largo del tiempo se ha estudiado la capacidad de diferentes tipos de materiales para eliminación del mercurio, con el fin de establecer una relación entre la capacidad de adsorción del metal y la composición del propio material en las condiciones de trabajo. Los estudios de adsorción y de desorción dan
información del mecanismo implicado en el proceso de bioadsorción, cómo es la unión entre el metal o compuesto orgánico con el bioadsorbente92.

5.1.6.3. TIPOS DE PROCESOS Y EQUIPOS

En la bioadsorción generalmente se utilizan dos técnicas de laboratorio: Unidades por lotes (experimentos en reactores Batch) y columnas de lecho fijo. Las primeras corresponden a una operación discontinua, mientras las segundas a un sistema de funcionamiento contínuo.

5.1.6.3.1. Bioadsorción en discontinuo

Llamada también operación por lotes o ensayos tipo Reactor Batch, la bioadsorción en discontinuo consiste en la adición del adsorbente a un volumen determinado de solución que es agitada posteriormente hasta alcanzar el equilibrio entre la fase líquida y la fase sólida, con el fin de analizar el comportamiento del adsorbente en la solución problema93. Una vez retenido, el metal contenido en el bioadsorbente, es retirado mediante un sistema de separación sólido-líquido; así mismo dicho metal puede ser recuperado mediante el proceso de desorción o dispuesto apropiadamente, dependiendo del costo del material adsorbente, el valor económico del metal retenido y su toxicidad94.

Este tipo de experimentos permiten obtener los valores óptimos de los distintos parámetros que influyen en el proceso de adsorción a partir de los cuales es posible estudiar las condiciones aplicables a un proceso real mediante ensayos en continuo. Además tienen las ventajas de obtener resultados con rapidez y requerir de bajas cantidades tanto de adsorbato como de bioadsorbente95.

92 Gavrilescu, M. La eliminación de los metales pesados del medio ambiente mediante la biosorción. 2004.
94 García Ríos, M. Biosorción de cadmio con raspo de uva. Aproximación a la monitorización del proceso mediante sensores químicos. Cataluña: Tesis de grado de la Universidad Politécnica de Cataluña. 2008
95 Triviño L., Hernández C. Evaluación de la capacidad de bioadsorción de Pb (ii) y Cd (ii) presentes en soluciones sintéticas independientes empleando retamo espinoso (Ulex europaeus) como adsorbente. 2016
5.1.7. BIOADSORVENTES

Una gran cantidad de los materiales naturales presentan elevada afinidad por los metales pesados y por otros contaminantes orgánicos, por lo tanto, son muchos los tipos de biomasa potencialmente disponibles para estudios de bioadsorción. Se ha comprobado que la capacidad para la eliminación contaminante de los biomateriales se relaciona con la gran variedad de grupos funcionales presentes en su estructura. La composición de estos grupos no varía significativamente entre especies diferentes de la misma familia. Entre los materiales más utilizados en procesos de adsorción se encuentran las algas, lignina, materiales con taninos, quitosano y quitina, xantato, zeolitas, musgo, madera, hojas de árbol, hongos, etc.

5.1.7.1. Material con lignina

Se engloban en este apartado diversos tipos de plantas y restos de vegetales terrestres. Materiales como el helecho, el musgo, hojas de arbustos y árboles, etc. presentan un elevado contenido en lignina lo que hace que sean prometedores adsorbentes en estudios de bioadsorción.

La lignina es el polímero natural más abundante después de la celulosa. Se trata de una molécula polifenólica que está presente en la pared celular de las plantas y se forma a partir de la polimerización enzimática de tres monómeros, alcohol coniferílico, alcohol sinapílico y alcohol p-cumarílico. La estructura resultante (ver Figura 1) es una macromolécula compleja con diferentes tipos de grupos funcionales y de posibles posiciones de enlace en su estructura. La función principal de la lignina es consolidar las fibras de celulosa en las plantas

La lignina se extrae como producto de desecho de la industria del papel. Se generan entre 40 y 50 millones de toneladas/año de este material en su mayoría.

98 Guo, X. et al., 2008; Tejado, A. et al. La adsorción de iones metálicos sobre la lignina 2007.
como producto de desecho no comercializado100. Una parte de la lignina producida se consume como fuel, otra posible aplicación es su uso como precursora de carbones activos101. La elevada capacidad de adsorción de la lignina se debe a los fenoles y otros grupos funcionales como aldehídos, cetonas, hidróxido, presentes en la superficie del material102, aunque es complicado definir su estructura puesto que las ligninas presentan cierta variación en su composición química.

Varios estudios han demostrado la capacidad de eliminación de la lignina con metales pesados (cobre, plomo, cadmio) y con colorantes u otros compuestos orgánicos (pesticidas, fenoles, surfactantes, etc.). Otros trabajos se han centrado en materiales lignocelulósicos, siendo complicado relacionar las capacidades de adsorción con la cantidad de lignina o celulosa presente en los mismos103.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figura1.pdf}
\caption{Estructura química de la Lignina. \textbf{Fuente.} Guo, X. et al., 2008.}
\end{figure}

5.1.7.2. \textbf{Taninos} 100 Bailey, S. E. et al., 1999; Suhas et al. Una revisión de los absorbentes potencialmente de bajo costo para los metales pesados. 2007. 101 Ibid, p. 45. 102 Dupont, L. et al., 2003; Suhas et al. Los iones metálicos de unión sobre un sustrato lignocelulósico extraída del salvado de trigo. 2007. 103 Ibid, p. 89.
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

El tanino es un polímero natural, abundante y económico104. Ciertos tipos de materiales como la corteza de árbol, el café o el té poseen taninos en su estructura105. Estos materiales son potenciales adsorbentes de metales pesados debido a la presencia de grupos polihidroxílicos y polifenólicos. En la Figura 2 se muestra un posible modelo de la estructura condensada de la molécula de tanino.

\section*{5.1.7.3. Otros materiales}

Además de los materiales expuestos anteriormente, existen artículos de revisión en el ámbito de la bioadsorción que clasifican algunos de los materiales más utilizados en dos grandes grupos: residuos de actividades agrícolas y residuos industriales y municipales106.

\textbf{Tabla 2.} Algunos adsorbentes utilizados en estudios de bioadsorción.

<table>
<thead>
<tr>
<th>Adsorbente Derivados De Residuos Agrícolas</th>
<th>Adsorbentes Derivados De Residuos Industriales Y Municipales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroz y trigo</td>
<td>Cenizas</td>
</tr>
<tr>
<td>Aserrín</td>
<td>Escorias, lodos y polvos de la industria del</td>
</tr>
</tbody>
</table>

104 Ogata, T., Nakano Y. Mecanismos de recuperación de oro a partir de soluciones acuosas utilizando un adsorbente de gel novela tanino sintetizados a partir de tanino condensado naturales, 2005.

105 Bailey, S.E., et al. Una revisión de los absorbentes potencialmente de bajo costo para los metales pesados. 1999.

106 Bhatnagar, A. Utilización de materiales de desecho agro-industriales y municipales como adsorbentes potenciales para el tratamiento agua, Una revisión. 2010.
A lo largo de los últimos años se han desarrollado numerosos estudios para comprobar la capacidad de adsorción en procesos de eliminación de contaminantes. En la Tabla 3 se reflejan algunos datos de capacidades de adsorción, obtenidas en trabajos previos, para el mercurio y diferentes tipos de adsorbentes.

Tabla 3. Capacidades de adsorción de Hg con diferentes tipos de materiales.

<table>
<thead>
<tr>
<th>Material</th>
<th>Bioadsorción (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helechos Arborecenses</td>
<td>26.5 mg/g</td>
</tr>
<tr>
<td>corteza de eucalipto (eucalyptus camaldulensis)</td>
<td>33.11 mg/g</td>
</tr>
<tr>
<td>Guayaba Manzana (Psidium guajava)</td>
<td>3.364 mg/g</td>
</tr>
<tr>
<td>madera de Papaya</td>
<td>70.8 mg/g</td>
</tr>
<tr>
<td>cascara de semilla de Ceiba (Ceiba Pentandra)</td>
<td>25.88 mg/g</td>
</tr>
</tbody>
</table>

Fuente. Tejada, C., Villabona, A., & Ruiz, V; 2012.

5.1.8. MODELIZACIÓN DE LOS PROCESOS DE EQUILIBRIO

El principal objetivo de los estudios de adsorción es conocer el mecanismo que tiene lugar y de qué forma las condiciones del medio pueden hacer variar la interacción de los contaminantes con el adsorbente con el fin de optimizar los parámetros del proceso. El primer paso hacia este objetivo es cuantificar la capacidad del material de eliminar compuestos en disolución y esto se obtiene aplicando los modelos que permiten describir el proceso y ajusten los datos bajo diferentes condiciones experimentales. Los modelos son relaciones matemáticas compuestas por un número limitado de parámetros ajustables los cuales dan una buena descripción del comportamiento experimental bajo distintas condiciones.
operacionales107. Estos modelos matemáticos se utilizan principalmente para obtener una descripción cuantitativa de los resultados experimentales y la determinación de los parámetros permite comparar las capacidades máximas de adsorción de cada uno de los adsorbentes probados. Los parámetros de las ecuaciones y las suposiciones termodinámicas de las isotermas deben de ser capaces de predecir la eliminación del contaminante, describiendo el mecanismo de adsorción y la influencia de las variables que controlan el proceso de eliminación como son el pH, la fuerza iónica o la presencia de otros contaminantes; pero la eliminación de los contaminantes sobre materiales naturales es un proceso complejo que implica, como ya se ha descrito, diferentes mecanismos que tienen lugar simultáneamente y en muchos casos, se alejan de las condiciones ideales y suposiciones que se describen en los modelos de isotermas. A pesar de esto, el uso de estos modelos está muy extendido ya que permiten ajustar los datos experimentales de forma sencilla e incorporan constantes fácilmente interpretables que pueden servir para comparar el proceso de eliminación entre diferentes contaminantes y adsorbentes.

La capacidad de adsorción es el parámetro más importante de un adsorbente y se mide en función de la cantidad de contaminante que puede retener, cuantificando la cantidad de la especie adsorbida por unidad de masa de adsorbente (Q_i):

\[
V = \text{volumen de disolución de contaminante que se pone en contacto con la biomasa}
\]

\[
Ci = \text{concentración inicial de contaminante}
\]

\[
Ce = \text{concentración en el equilibrio}
\]

\[
m = \text{masa de adsorbente seco}
\]

107Mudhoo, A. et al. Removal of heavy metals by biosorption. 2012.
Esta variable está influida por una serie de propiedades como el tamaño y distribución de poros y partículas del adsorbente, superficie específica, capacidad de intercambio iónico, pH, grupos funcionales en la superficie o la temperatura.

En el equilibrio de adsorción existe una distribución del adsorbente entre la disolución y la superficie del adsorbato; las concentraciones en el equilibrio son función de la temperatura, por ello, las relaciones de equilibrio de adsorción se expresan a través de las isotermas. Así, las isotermas de adsorción se definen como las representaciones de la cantidad de especie adsorbida (Qe) frente a la concentración en el equilibrio de dicha especie en disolución, Ce, y permiten describir los resultados bajo condiciones experimentales concretas.¹⁰⁸

Algunos de los modelos más empleados en los estudios de adsorción incluyen dos, tres o incluso cuatro parámetros para modelizar los datos de una isoterma; entre estos modelos se encuentran el de Langmuir, el de Freundlich y el de Langmuir-Freundlich. Estos modelos se aplican con frecuencia porque son simples, tienen sentido físico y son fácilmente interpretables.¹⁰⁹

5.1.9. ÁRBOL DE LA Moringa oleífera
La Moringa oleífera es un árbol de crecimiento acelerado, de contextura pequeño que alcanza una altura aproximada 12 m, se aprecia primordialmente por sus frutas, hojas, flores, raíces, todas comestibles, y por sus semillas oleaginosas. Este cultivo puede ser propagado por medio de semillas o por reproducción asexual (estacas), con características de un suelo pobre, soportando largos períodos de sequía (400 mm) y crece bien en condiciones áridas y semiáridas.¹¹⁰

¹¹⁰ Herreño N. et al, evaluación de variables fisiológicas para la adaptación de moringa (moringa oleifera lam.) en fase de vivero bajo diferentes condiciones de luz en el municipio de ricaurte, vereda el callejon (cundinamarca). 2013
5.1.9.1. Taxonomía

En la tabla 4 se indica la clasificación taxonómica de la Moringa oleífera, la cual se considera que por sus propiedades tiene un alto poder nutricional\(^{111}\) y a esto se le adiciona el contenido de compuestos que ayudan a descontaminación de los cuerpos de agua.

Tabla 4. Taxonomía De La Especie Vegetal Moringa oleífera.

<table>
<thead>
<tr>
<th>REINO</th>
<th>Planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-REINO</td>
<td>Embriophyta</td>
</tr>
<tr>
<td>DIVISIÓN</td>
<td>Anthophyta</td>
</tr>
<tr>
<td>CLASE</td>
<td>Dicotiledónea</td>
</tr>
<tr>
<td>ORDEN</td>
<td>Rhoeales</td>
</tr>
<tr>
<td>FAMILIA</td>
<td>Moringáceae</td>
</tr>
<tr>
<td>GENERO</td>
<td>Moringa</td>
</tr>
<tr>
<td>NOMBRES COMUNES</td>
<td>Terebinto, Marango, Moringa, Morango, Perlas, Sasafrás</td>
</tr>
<tr>
<td>ESPECIES</td>
<td>Arboórea, concanensis, drocanesis, drouhardii, hildebranditii, peregrina, ovalaifolia, rospoliana, stenopetala, rivae,oleífera y borziana.</td>
</tr>
</tbody>
</table>

Fuente. Herreño Néstor, 2013.

5.1.9.2. Características morfológicas

En la Tabla 5. Se presentan las características morfológicas de la Moringa oleífera. Este árbol crece bien en alturas que van desde 0 msnm hasta los 1200 msnm y se desarrolla en temperaturas altas, es decir que su adaptación seda en los diversos pisos térmicos\(^{112}\)

Tabla 5. Características morfológicas de la Moringa oleífera.

<table>
<thead>
<tr>
<th>CARACTERÍSTICA MORFOLÓGICA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>La raíz principal mide varios metros y es carnosa en forma de rábano. Es pivotante y</td>
<td></td>
</tr>
</tbody>
</table>

\(^{111}\)Ibid, p. 4.

\(^{112}\)Ibid, p. 7.
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL *Moringa oleifera*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

globosa lo que le brinda a la planta cierta resistencia a la seria en periodos prolongados. Cuando se le hacen cortes, produce una goma color rojizo parduzco.

Las hojas son compuestas de unos 20 cm de largo, con hojuelas delgadas, oblongas u ovaladas de 1 a 2 cm de largo y de color verde claro; tienen cualidades nutritivas sobresalientes. Que están entre las mejores de todos los vegetales perennes. El contenido de proteína es del 27%, además tienen cantidades significativas de calcio, hierro y fosforo, así como vitamina A y C.

Las flores son de color crema, numerosas fragantes y bisexuales. Miden 1 a 1.5 cm de largo. Estas se encuentran agrupadas y están compuestas por sépalos lineales a lineal-oblongo de 9 a 13 mm de largo. Los petalos son un poco más grandes que los sépalos.

La corteza es blanquecina, el tronco generalmente espeso e irregular en tamaño y forma y la corana pequeña y densa, rara vez sobrepasa los 10 metros de altura.
Las frutas son una capsula de color pálido, de tres lados, lineales y pendientes, con surcos longitudinales usualmente de 20 a 40 cm de largo, y de 2 a 2.5 cm de ancho. Si se corta transversalmente se observa una sección triangular con varias semillas dispuestas a lo largo.

Las semillas son carnosas cubiertas por una cascara fina de color café. Poseen tres alas, o semillas aladas de 2.5 a 3 mm de largo, al quitar la cascara se obtiene el endospermo que es blanquecino y muy oleaginoso.

La *Moringa oleífera* se caracteriza por ser uno de los árboles más útiles para zonas propensas de sequía. El uso principal que se le otorga a esta especie es en las cocinas y en huertas caseras, debido a sus hojas suculentas para preparación de sopas, salsas o ensaladas. Las vainas son a menudo cocidas y consumidas como arvejas. La raíz tiene un sabor al rábano picante, una comida popular en el este de África. Las flores se pueden comer en ensaladas o usarse como té, éstas producen buenas cantidades de calcio y potasio, también son muy usadas en apicultura. De igual manera varias partes del *Moringa oleífera* son usadas en medicina como diurético, laxante, bactericida, anti-escorbútico y anti-inflamatorio.
De la semilla se extrae el aceite, el cual se encuentra en un 25 -30 % utilizado en industria farmacéutica, de alimentos, cosmética y como lubricante de maquinaria industrial y mecánica de precisión (relojes, etc.)

Estudio de la Moringa como purificador de agua

La utilidad de especie en un estudio referente a las propiedades que presenta la semilla de *Moringa oleifera* radica como purificadora de aguas de ríos. Según algunas investigaciones realizadas, ésta semilla posee una proteína llamada pterygospermina, un compuesto bactericida y fungicida. Su efecto flocculante es por diferencia de cargas eléctricas que se establece entre las partículas que se encuentran en suspensión en el agua y el extracto de la semilla de *Moringa oleifera*.

Figura 9. Usos potenciales de diferentes partes de la planta Moringa oleífera en la industria y producción de alimentos. **Fuente.** Chojnacka, K., 2010.
La moringa como material bioadsorbente

La *Moringa oleífera* ha sido utilizada como bioadsorbente para eliminar diferentes metales, algunas de sus partes como la corteza que fue utilizada para la eliminación del Ni (III), cuya capacidad máxima de bioadsorción fue de 30,38mg/g, con un pH óptimo de la solución de 6, una concentración de biomasa de 0,4g y un tiempo de contacto de 60min. Otra parte de la planta que se utilizó para remover este mismo metal fueron las hojas de la *Moringa oleífera* cuya capacidad máxima de adsorción fue de 163,88mg/g, con un pH de 6, a una temperatura de 49,84°C, en un tiempo de contacto de 50 min.

Otro estudio realizado por García, B. et al. 2012. Con la cascara y el carbón activo de la *Moringa oleífera* como bioadsorbente para la eliminación de Ni, Cu y Cd de agua sintética, demostró que los porcentajes de eliminación superiores al 93%, 96% y 95% para Ni, Cu y Cd, respectivamente, estudiando variables como el tiempo de contacto, dosis de adsorbente, pH y temperatura.

Las vainas de *Moringa oleífera* han sido utilizadas para la remoción de Maganeso (II), donde los resultados mostraron que este biadsorbente contienen grupos funcionales y un perfil morfológico adecuado para la retención de iones metálicos, en este estudio se tuvo en cuenta el efecto del tiempo de contacto (5 a 90 min), la dosis de biomasa (0,25 g), la concentración de metal (4.0 mg/L), el volumen de la solución de ensayo (25 mL) y el pH de 7; demostrando que el tiempo de contacto óptimo fue de 5 minutos y el porcentaje de remoción fue de 79%.

114 García, B. et al. Estudio de la descontaminación de efluentes líquidos con elevada concentración de metales pesados mediante bioadsorbentes de *moringa oleifera*. 2012.

115 Rodríguez, M. et al. Un estudio de la remoción de manganeso (II) a partir de sistemas acuosos usando cápsulas de *moringa oleifera* como bioadsorbente. Cenic ciencias biológicas.2015.
5.2. MARCO GEOGRÁFICO

El presente estudio se realizó en el laboratorio de química de la universidad de Cundinamarca en la ciudad de Girardot–Cundinamarca en la dirección: Cra. 19 # 24-209 B/ Gaitán, con las coordenadas: latitud: 4°18’ 38” N longitud: 74° 48’ 38” W. Girardot se encuentra a 326 m.s.n.m., presenta una temperatura promedio anual de 33°C y una humedad relativa de 73.

5.3. MARCO LEGAL

A partir de la ley 2811 de 1974 en Colombia, comienza a darse importancia a la conservación de los recursos naturales; con el pasar de los años se ha creado normatividad cada vez más específica y estricta a temas de contaminación, en este caso contaminación a fuentes hídricas por metales pesados, como se observa en la tabla 6.

Tabla 6. Marco Legal referente a la contaminación hídrica en Colombia.

<table>
<thead>
<tr>
<th>NORMATIVIDAD</th>
<th>ATR</th>
<th>CONTENIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directiva del Consejo 82/176/CEE, de 22 de Marzo de 1982, UNIÓN EUROPEA</td>
<td>79,80, 366</td>
<td>La presente Directiva completa las disposiciones sobre vertidos de sustancias peligrosas en el medio acuático dentro de la Unión Europea.</td>
</tr>
<tr>
<td>La Constitución Nacional de Colombia de 1991</td>
<td></td>
<td>Todo ser humano tiene derecho a gozar de un ambiente sano, y es función del Estado garantizar dicho derecho, así como el mejoramiento de la calidad de vida de la población, dando solución a las Necesidades básicas insatisfechas.</td>
</tr>
<tr>
<td>Ley 9 de 1979 “por el cual se dictan Medidas Sanitarias”</td>
<td>1 – 9</td>
<td>Usos del agua Residuos líquidos Disposiciones generales de vigilancia y control. Sanciones</td>
</tr>
<tr>
<td>Decreto 2811 de 1974 “Por el cual se dicta el Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente”</td>
<td>1 – 3</td>
<td>Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente. Prevención y control de la contaminación.</td>
</tr>
<tr>
<td>Decreto 1575 de 2010 “por el cual se establece el Sistema para la Protección y Control de la Calidad del Agua para Consumo Humano”</td>
<td>8, 16</td>
<td>Vigilancia de las características físicas, químicas y microbiológicas del agua Información de sustancias potencialmente tóxicas</td>
</tr>
<tr>
<td>Decreto 3930 de 2010</td>
<td>9, 16</td>
<td>usos del agua y residuos líquidos</td>
</tr>
<tr>
<td>NORMATIVIDAD</td>
<td>ATR</td>
<td>CONTENIDO</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>“Por el cual se reglamenta parcialmente el Título I de la Ley 9ª de 1979, así como el Capítulo II del Título VI -Parte III- Libro II del Decreto-ley 2811 de 1974 en cuanto a usos del agua y residuos líquidos y se dictan otras disposiciones”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolución 0631 de 2015</td>
<td>3,9,</td>
<td>Parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales.</td>
</tr>
<tr>
<td>“por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. METODOLOGÍA

Esta investigación es de tipo experimental en la que se determinó la bioadsorción de iones de mercurio con vainas de *Moringa oleifera*, donde se manejó como variable independiente la cantidad de bioadsorbente, analizando la influencia que esta variable independiente tiene con las tres covariables, las cuales son pH, temperatura y tiempo de contacto.

Este experimento se dividió en cuatro etapas como se observa en la Figura 11, la primera etapa se basó en la búsqueda de antecedentes y estado del arte de la *Moringa oleifera*, la segunda etapa consistió en la recolección, tratamiento y cuantificación de taninos del material vegetal de la *Moringa oleifera* (bioadsorbente), en la tercera etapa se realizaron las pruebas de laboratorio donde se preparó la concentración inicial de iones de Hg$^{+2}$ y las pruebas de bioadsorción en discontinuo con el bioadsorbente y en la cuarta etapa se determinó la concentración final de iones de Hg$^{+2}$ presentes en la solución.

Figura 11. Procedimiento empleado en el proyecto de investigación. **Fuente.** Autores, 2016.
6.1. ETAPA 1. ESTUDIO PRELIMINAR

Se realizó una búsqueda detallada sobre la estructura y composición vegetal de la *Moringa oleífera* en la que se encontraron 20 artículos (Pastos y Forrajes117, Tecnocientífica URU118) sobre el proceso de bioadsorción con diferentes bioadsorbente expuestos a diferentes metales pesados se hallaron 33 artículos (CENIC Ciencias Biológicas119, Redalyc120, Nexo121 y Soc Quím Perú122) y respecto a la realización de la isoterma de adsorción se evidenciaron 5 artículos científicos. Toda esta información fue la base para llevar a cabo esta investigación de bioadsorción de iones de mercurio implementando las vainas de la *Moringa oleífera*.

6.2. ETAPA 2. TRABAJO DE CAMPO

6.2.1. Recolección del material vegetal y tratamiento físico de la biomasa

Se utilizaron 100 vainas de *Moringa oleífera* asumiendo una pérdida del 10% debido a las condiciones agroclimáticas, estas fueron obtenidas del centro de investigación CORPOICA Nataima, ubicado en el km 9 vía Espinal- Chicoral con coordenadas 4°12’30’’N y 74°58’36’’W y cuenta con una altitud 323 m.s.n.m. Las vainas fueron recolectadas y lavadas según protocolo sobre recolección de vainas arbóreas (Anexo A); seguidamente se extrajeron las semillas, se secaron al sol, a una temperatura de 33°C por dos semanas, después fueron cortadas, continuo a esto se lavaron con abundante agua, se secaron durante 41 horas a una temperatura de 40°C en un horno Memmert, consecutivamente el material vegetal

120 Redalyc. Disponible en http://www.redalyc.org/ recuperado el 15 de febrero de 2017.

121 Nexo. Disponible en http://www.lamjol.info/index.php/NEXO recuperado el 15 de febrero de 2017

deshidratado fue molido en un procesador de alimentos y fueron tamizadas con un tamaño de partícula de 1 mm.

6.2.2. Cuantificación de Taninos en el material bioadsorbente

Seguido de la recolección y tratamiento físico de la biomasa el polvo fino fue caracterizado mediante un análisis fitoquímico en el laboratorio LASEREX de la universidad del Tolima utilizando un método analítico de espectrofotometría ultravioleta-visible con el fin de determinar la cantidad de taninos presentes en la biomasa.

6.3. ETAPA 3. PRUEBAS DE LABORATORIO

6.3.1. Preparación de la solución de Cloruro de Mercurio (HgCl₂)

Para calcular la cantidad de cloruro de mercurio (HgCl₂) que se necesitó para preparar una disolución de 10 L y obtener una concentración de 97 ppm, la cual se expresó en unidades basadas en la relación peso/peso; se realizó la siguiente conversión:

\[
\text{Nota: El (HgCl}_2\text{) se encontraba con una pureza del 100\%.}
\]

Obtenidos los gramos necesarios para esta investigación se realizó un pesaje de 1,35 g de cloruro de mercurio HgCl₂ en una balanza analítica, se agregó esta sal de mercurio a un beaker de 1000 mL con 40 mL de agua destilada y se colocaron en un agitador magnético para que solubilizar, luego se diluyó en un blanco de 10 litros de agua destilada, esta cantidad fue medida con matraz aforado de 1000 mL, para así observar el comportamiento que tendría el adsorbato en el proceso de bioadsorción.

6.3.2. Proceso de bioadsorción de iones de Mercurio (Hg⁺²)
Para desarrollar este proceso se estableció la temperatura del laboratorio de la universidad de Cundinamarca, Seccional Girardot a 28 °C, seguidamente se pesaron 5, 10 y 15 g de vainas de *Moringa oleífera*, las cuales fueron expuestas a la solución de cloruro de mercurio (HgCl₂) sin modificar su pH que oscilaba de 6 a 7, para determinar los porcentajes de adsorción de las vainas de *Moringa oleífera* a tres tiempo establecidos por esta investigación de (20, 60 y 100 min), con el fin de establecer el tiempo óptimo de remoción con las condiciones de pH y temperatura ya establecidas.

Este procedimiento se desarrolló en un beaker de 1000 mL colocados en los agitadores magnéticos a 200 rpm, donde se puso en contacto la biomasa con los tiempos como se observa en la Tabla 7.

<table>
<thead>
<tr>
<th>T</th>
<th>C.B.M (g)</th>
<th>T.C (min)</th>
<th>C.I (ppm)</th>
<th>pH</th>
<th>Temperatura °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀₀</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₅/20</td>
<td>5</td>
<td>20</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₅/60</td>
<td>5</td>
<td>60</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₅/100</td>
<td>5</td>
<td>100</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₀/20</td>
<td>10</td>
<td>20</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₀/60</td>
<td>10</td>
<td>60</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₀/100</td>
<td>10</td>
<td>100</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₅/20</td>
<td>15</td>
<td>20</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₅/60</td>
<td>15</td>
<td>60</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>T₁₅/100</td>
<td>15</td>
<td>100</td>
<td>97</td>
<td>7</td>
<td>28</td>
</tr>
</tbody>
</table>

Una vez finalizado el tiempo de contacto, cada tratamiento se filtró al vacío con el equipo Rocker 300ss como se observa en la Figura 12; el bioadsorbente usado en este proceso fue donado al grupo de investigación de agricultura orgánica y salud en el suelo (AOSS) de la universidad de Cundinamarca, seccional Fusagasugá para continuar con el proceso de desorción. Seguido a este proceso se tomó 500 mL de la solución de cada tratamiento, las cuales fueron enviadas al laboratorio de CORPOICA-MOSQUERA donde se analizó por espectrofotometría de adsorción atómica (EAA) la cantidad de iones de Hg⁺² presentes en cada tratamiento, la
solución restante en este proceso fue puesta en disposición del laboratorio de la universidad de Cundinamarca, seccional Girardot como residuo peligroso.

Figura 12. Procedimiento de Bioadsorción de iones de Hg$^{2+}$ Usando *Moringa oleifera* como bioadsorbente. **Fuente.** Autores, 2016.

6.4. ETAPA 4. ANÁLISIS DE DATOS

Para establecer el porcentaje de disminución de iones de Hg$^{2+}$ en cada tratamiento se realizó una tabulación por medio del software Excel, para determinar el tiempo óptimo de retención de iones de Hg$^{2+}$ los datos obtenidos se corrieron por medio de la prueba de Kurskal-wallis, la cual se interpretó por medio de una caja y bigotes (gráfica de barras) la concentración final vs tiempo, para comprobar la cantidad de mercurio retenido se creó la isoterma de Langmuir a una única concentración de iones de Hg$^{2+}$.
6.5. TÉCNICAS O INSTRUMENTOS PARA LA RECOLECCIÓN DE DATOS

- Protocolo de recolección de vainas especie arbórea: *Moringa oleifera*.
- Instructivo para la toma de muestra para aguas residuales.
- Protocolo para el proceso de bioadsorción en laboratorio.

La Tabla 8 muestra los instrumentos y reactivos necesarios para llevar a cabo el presente estudio.

Tabla 8. Instrumentos y reactivos utilizados en el proyecto de investigación.

<table>
<thead>
<tr>
<th>INSTRUMENTOS</th>
<th>REACTIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dispositivo GPS</td>
<td>• Agua destilada para el lavo y preparación de</td>
</tr>
<tr>
<td>• Cámara fotográfica</td>
<td>las disoluciones</td>
</tr>
<tr>
<td>• tijeras de jardinería</td>
<td>• Cloruro de Mercurio HgCl₂, 99%.</td>
</tr>
<tr>
<td>• Machete</td>
<td></td>
</tr>
<tr>
<td>• Bolsas de plástico con cierre hermético</td>
<td></td>
</tr>
<tr>
<td>• Procesador de alimentos doméstico</td>
<td></td>
</tr>
<tr>
<td>• Horno</td>
<td></td>
</tr>
<tr>
<td>• Beaker de 1000 mL</td>
<td></td>
</tr>
<tr>
<td>• Rocker 300ss</td>
<td></td>
</tr>
<tr>
<td>• pipeta</td>
<td></td>
</tr>
<tr>
<td>• Agitador</td>
<td></td>
</tr>
<tr>
<td>• Gotero</td>
<td></td>
</tr>
<tr>
<td>• Agitadores magnéticos</td>
<td></td>
</tr>
<tr>
<td>• Autoclave</td>
<td></td>
</tr>
<tr>
<td>• Bomba de vacío</td>
<td></td>
</tr>
<tr>
<td>• Balanza digital</td>
<td></td>
</tr>
<tr>
<td>• pH metro</td>
<td></td>
</tr>
<tr>
<td>• Papel de Filtro</td>
<td></td>
</tr>
<tr>
<td>• Embudo</td>
<td></td>
</tr>
<tr>
<td>• Vidrio de reloj</td>
<td></td>
</tr>
<tr>
<td>• Botellas de pbc</td>
<td></td>
</tr>
<tr>
<td>• Nevera hermética</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE. Autores, 2016.
6.6 ANÁLISIS DE CUANTIFICACIÓN DE TANINOS EN EL MATERIAL BIOADSORBENTE

Para el análisis químico se utilizó una bolsa de papel craft la cual contenía 500 g. de la biomasa (polvo de vainas de *Moringa oleífera*), que fueron enviados al Laboratorio LASEREX en Ibagué, para determinar la cantidad de taninos por medio de la técnica de espectrofotometría ultravioleta visible.

6.7 ANÁLISIS QUÍMICOS

Para los análisis químicos se usaron botellas plásticas de 500 mL esterilizadas, las cuales fueron usadas para tomar las muestras de cada tratamiento bajo la metodología de la toma de muestras de aguas residuales (IDEAM). Estas muestras fueron enviadas al laboratorio de CORPOICA- MOSQUERA para determinar la concentración de iones de Hg\(^{+2}\) mediante el método de espectrofotometría de adsorción atómica (EAA).

6.8. ANÁLISIS ESTADÍSTICOS

La tabulación de los gráficos y los datos se realizaron en el programa Microsoft Excel; para calcular el porcentaje de remoción de iones de Hg\(^{+2}\) ejercida por las vainas de la *Moringa oleífera*. Se aplicó la siguiente fórmula:

\[
\text{Porcentaje de remoción} = \frac{\text{i} - \text{f}}{\text{i}}
\]

Donde \(i\) es la concentración inicial del metal (ppm), \(f\) es la concentración final del metal (ppm)123.

Para el análisis estadístico de los datos se seleccionó la prueba de Kruskal–Wallis, ya que permite evaluar datos no paramétricos, debido a que no asume normalidad en los datos124. En el presente estudio los factores controlados (variables) son: pH, temperatura, tiempo y cantidad de biomasa, mientras la covariable es la

124 Universidad de Castilla. (s.f.). Anova un factor y Kruskal-Wallis. Recuperado el 12 de Febrero de 2017, de http://serviciond.uclm.es/
concentración de iones de Hg$^{+2}$. Este análisis fue realizado usando el paquete estadístico past, verificando el tiempo óptimo de adsorción de iones de Hg$^{+2}$.
7. RESULTADOS Y DISCUSIÓN

7.1. PROCESO DE RETENCIÓN DE IONES DE Hg$^{+2}$ POR MEDIO DE LOS TANINOS PRESENTES EN LAS VAINAS DE *Moringa oleifera*.

Se identificó que la *Moringa oleifera* contiene 1,5 mg de taninos como lo confirma el análisis Fitotímico de espectrofotometría ultravioleta-visible realizado a las vainas en esta investigación, además Hernández, 2008125 afirma que estas sustancias contienen un grupo denominado polihidroxi-polifenol, las cuales son especies activas implicadas en la etapa del desarrollo de biosorción, de igual manera esta especie vegetal tiene la capacidad de realizar la retención con otros metales pesados como lo muestra Rodríguez, 2015126 en su estudio de remoción de manganeso (II) usando cápsulas de *Moringa oleifera* con una remoción del 95% otro estudio es el de García *et al.*, 2012127, el cual concluye que la cáscara de la *Moringa oleifera* tiene una capacidad de retención del 93.15, 96.93 y 95.16 % para el Ni, Cu y Cd respectivamente y Vázquez, 2016128 demostró la efectividad de la adsorción de la hoja de la *Moringa oleifera* con respecto al arsénico obteniendo un 90.3 % de remoción.

Lo anterior se debe gracias a la presencia de taninos en las vainas de *Moringa oleifera*129 que son los agentes que permiten que ocurra la adsorción debido a que estos compuestos tienden a ionizarse con el cloruro de mercurio (I):

$$\Delta$$

Luz

De tal manera donde el Hg$_2$Cl$_2$ en presencia de luz y calor se descompone en HgCl$_2$ y Hg130 y como resultado el HgCl$_2$ tiende a mezclarse con el tanino que

125 Hernández, Ángela. 2008. Influencia del tamaño de partícula en la biosorción de plomo con raspo de uva. España.
127 Ibíd., p. 1104.
128 Ibíd., p. 48.
129 Ibíd., p. 51.
realiza la ionización desprendiendo un protón (H\(^+\)) y tomando el \(\text{HgCl}_2\), que según Brönsted y Lowry, en la teoría de ácido-base, los ácidos son una molécula o ión donadora de protones\(^{131}\). El porcentaje de iones de mercurio que no se removió fue debido a que estos compuestos son solubles y no son retenidos en el proceso de ionización del tanino y el \(\text{HgCl}_2\).

7.2. PORCENTAJE DE REMOCION DE IONES DE \(\text{Hg}^{+2}\)

Con el fin de analizar el comportamiento de remoción de iones de \(\text{Hg}^{+2}\) con una concentración inicial de 97 ppm, se colocó en contacto tres cantidades de polvo de las vainas de *Moringa oleifera* (5, 10 y 15 g) en tres diferentes tiempos (20, 60 y 100 min). De las muestras realizadas en cada tratamiento se determinó la cantidad de iones de \(\text{Hg}^{+2}\) restantes en la solución, los resultados se muestran en la tabla 9, en la cual no fue posible determinar qué cantidad de biomasa realiza una mejor adsorción.

Tabla 9. Porcentaje de Remoción de iones de \(\text{Hg}^{+2}\) en cada tratamiento.

<table>
<thead>
<tr>
<th>T</th>
<th>C.I (ppm)</th>
<th>C.F (ppm)</th>
<th>% Remoción</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_{0/0})</td>
<td>97</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>T(_{5/20})</td>
<td>97</td>
<td>75</td>
<td>23</td>
</tr>
<tr>
<td>T(_{5/60})</td>
<td>97</td>
<td>58</td>
<td>40</td>
</tr>
<tr>
<td>T(_{5/100})</td>
<td>97</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>T(_{10/20})</td>
<td>97</td>
<td>70</td>
<td>28</td>
</tr>
<tr>
<td>T(_{10/60})</td>
<td>97</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>T(_{10/100})</td>
<td>97</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>T(_{15/20})</td>
<td>97</td>
<td>73</td>
<td>25</td>
</tr>
<tr>
<td>T(_{15/60})</td>
<td>97</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>T(_{15/100})</td>
<td>97</td>
<td>50</td>
<td>48</td>
</tr>
</tbody>
</table>

Convenciones: T: Tratamientos; C.I: Concentración inicial; C.F: Concentracion final. **Fuente.** Autores, 2016.

\(^{130}\)Jiménez, Angélica, 2005. Interacción del mercurio con los componentes de las aguas residuales. Manizales.

\(^{131}\)Universidad de Alcalá, 1995. Ácidos y bases. Madrid
Para realizar una mejor interpretación de la Tabla 9, se realizó una gráfica (Figura 13), donde se contemplan los porcentajes de remoción adsorbida por el polvo de las vainas de la *Moringa oleifera* en cada tratamiento, en la que se observa un comportamiento similar en los tratamientos (T\(_{5/20}\), T\(_{10/20}\) y T\(_{15/20}\)) con un porcentaje de remoción de iones de mercurio de 23% a 28% y para los tratamiento (T\(_{5/60}\), T\(_{5/100}\), T\(_{10/60}\), T\(_{10/100}\), T\(_{15/60}\) y T\(_{15/100}\)) un porcentaje de remoción de iones de mercurio de 40% a 48%. Donde se esperaba que a mayor cantidad de biomasa fuera mayor el número de sitios activos disponibles para la bioadsorción\(^{132}\). Sin embargo, esto no se cumple debido a que “a una menor concentración de biomasa en la solución permite una mejor dispersión de la misma, lo cual facilita el contacto de los grupos activos de la biomasa con los iones de Hg\(^{+2}\), lo que produce una mayor captura de iones metálicos”\(^{133}\); pero esto no se evidencio en esta investigación.

![Figura 13. Porcentaje de Remoción de iones de Hg\(^{+2}\). Fuente: Autore, 2016.](image)

\(^{132}\) Triviño L., Hernández C., 2016. Evaluación de la capacidad de bioadsorción de Pb (ii) y Cd (ii) presentes en soluciones sintéticas independientes empleando retamo espinoso (Ulex europaeus) como adsorbente. Bogotá D.C.

Con los resultados adquiridos del porcentaje de remoción de iones de mercurio, se realizó un análisis ANOVA que permitió determinar la falta de normalidad de los datos, debido a esto se realizó una prueba de kruskal –wallis con un intervalo de confianza (p= 0.05), en la que se obtuvo una p=0.66 (Tabla 10), esto evidencia que no existe una diferencia significativa en la mediana de la concentración de iones de Hg^{2+} en las tres cantidades de biomasa utilizada y se deduce que la cantidad de biomasa es un factor no muy relevante en este proceso de bioadsorción, debido a que todos los tratamientos llegaron a reducir la concentración de iones de mercurio sin una variación notoria ejercida por la biomasa, estos resultados muestran que las características físicas y químicas del bioadsorbente son los factor que permite que ocurra un adecuado proceso de bioadsorción en cuanto se refiere a la biomasa y el tamaño de partícula que según Benítez, 2014 “al disminuir el tamaño de esta el número de centros activos por unidad se incrementa, al igual que la capacidad de adsorción de iones metálicos”.

Tabla 10. Test de Kruskal–wallis con respecto a la biomasa.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>5g</th>
<th>10g</th>
<th>15g</th>
</tr>
</thead>
<tbody>
<tr>
<td>20min</td>
<td></td>
<td>0,8248</td>
<td>0,5066</td>
</tr>
<tr>
<td>60min</td>
<td>1</td>
<td></td>
<td>0,8248</td>
</tr>
<tr>
<td>100min</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

7.3. DETERMINAR EL TIEMPO ÓPTIMO DONDE SE ALCANCE LA MAYOR RETENCIÓN DE IONES DE MERCURIO.

Para determinar el tiempo óptimo en la bioadsorción de iones de Hg^{+2} usando vainas de *Moringa oleifera* se estableció una concentración inicial de 97 ppm, un pH de 7 y un tiempo de contacto máximo de 100 min a 200 rpm a una temperatura de 28°C.

La bioadsorción de los iones de Hg^{+2} es dependiente del tiempo, lo cual sugiere que la retención del ion puede ser a través de la interacción con grupos funcionales localizados en la superficie de la biomasa utilizada; por este motivo se estudió la concentración de iones de mercurio en función del tiempo en min, en el cual se tomaron muestras a los minutos 0, 20, 60 y 100 min con tres diferentes cantidades de bioadsorbente (5, 10 y 15g). En la gráfica (Figura 14) se puede evidenciar la concentración final de cada uno de los tratamientos establecidos por esta investigación, donde se evidencia que en el tiempo de 20 min el tratamiento que más se destacó fue el de la biomasa de 10 g con una concentración final de 69ppm con un porcentaje de remoción de 28%, en los minutos 60 y 100 sobresale la biomasa de 15g con una concentración final de 52 y 50 ppm respectivamente con un porcentaje de remoción de 46%.

135 Cascaret-Carmenaty, D. A. (2014). Determinación de la capacidad de adsorción de cromo (VI) por biomasa bacteriana. Revista Cubana de Química.
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

Con la gráfica (Figura 14) no fue posible determinar el tiempo óptimo de bioadsorción debido a que la cantidad de tiempos estimados no fue suficiente para llegar a un equilibrio de adsorción, para observar con mayor detalle las variaciones de las concentraciones finales de iones de Hg$^{2+}$ se usó la prueba de kruskal–wallis con un intervalo de confianza ($p=0.05$), en la que se obtuvo una $p=0.03$ (Tabla 11.), esto evidencia que existe una diferencia significativa en la mediana de la concentración de iones de Hg$^{2+}$ en los tres tiempos implementados.

Tabla 11. Test de Kruskal-Wallis respecto al tiempo de bioadsorción.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Concentración 5 g</th>
<th>Concentración 10 g</th>
<th>Concentración 15g</th>
</tr>
</thead>
<tbody>
<tr>
<td>20min</td>
<td>0.08086</td>
<td>0.07652</td>
<td></td>
</tr>
<tr>
<td>60min</td>
<td>0.2426</td>
<td></td>
<td>0.1642</td>
</tr>
<tr>
<td>100min</td>
<td>0.2296</td>
<td>0.4925</td>
<td></td>
</tr>
</tbody>
</table>

Posterior a esto se realizó una gráfica de cajas y bigotes (Figura 15) en la que se observa que en el tiempo de 20 min en la parte inferior de la caja es mayor que la superior, esto quiere decir que el tiempo se encuentra a un mayor grado de
disparidad, destacándose este tiempo de los demás; este resultado nos afirma que los procesos de adsorción de metal o compuesto orgánico/biomasa tienen tiempos cortos, llegándose al equilibrio en unas pocas minutos.136

\begin{figure}[h]
\centering
\includegraphics[width=0.6\textwidth]{figura15.png}
\caption{Análisis de caja y bigotes del tiempo de bioadsorción. \textbf{Fuente.} Autores, 2016.}
\end{figure}

7.4. DETERMINACIÓN DE LA ISOTERMA DE LANGMUIR.

Al realizar el análisis de la isoterma con los factores propuestos en esta investigación; se implementó un modelo de isoterma de adsorción diferente a los que otros investigadores han diseñado, debido a que este estudio experimental implementaba tres cantidades de bioadsorbente con una única concentración de iones de Hg2+ (97 ppm) con el fin de observar si se presentaba un ajuste de los datos experimentales.

Este proceso se inició con un pH que oscilaba de 6 a 7, debido a que Colpas, 2016 en su investigación de adsorción de mercurio afirma que “a valores de pH comprometidos entre 2 y 4 hay un aumento de adsorción de iones de mercurio y

entre 4 y 7 el sistema entra en equilibrio" 137, por esta razón esta investigación busco determinar los porcentajes de adsorción con las vainas de *Moringa oleifera* a un pH de 6 a 7, con una temperatura controlada de 28°C y con una concentración de iones de Hg$^{+2}$ de 97 ppm debido a que se buscaba confirmar lo que planteó Murillo en el 2011 que “estos procesos son más rápidos en concentraciones bajas; sin embargo a altas concentraciones se observó una disminución en la velocidad de adsorción”138.

Debido a que no se logró establecer el tiempo en equilibrio para adsorción de iones de Hg$^{+2}$ por la insuficiencia de datos escogidos, no fue posible determinar la isoterma de adsorción causando un impedimento para cumplir el modelo propuesto de Isoterma de Langmuir.

8. CONCLUSIONES

- Después de haber analizado el proceso de bioadsorción se concluye que la cantidad de biomasa es un factor no muy relevante en el proceso de bioadsorción, debido a que todos los tratamientos llegaron a reducir la concentración de iones de mercurio sin una variación notoria ejercida por la biomasa, estos resultados muestran que las características físicas y químicas del bioadsorbente son los factores que permite que ocurra un adecuado proceso de bioadsorción.

- Como resultado de la investigación estadística presentada, es posible concluir que el mejor tiempo para la bioadsorción de iones de Hg$^{+2}$ es de 20 min, confirmando que este proceso ocurre en tiempos cortos.

- La isoterma de adsorción de Langmuir es un modelo simplificado en el cual indica que la superficie del sólido contiene ciertos números de sitios activos para la sorción adsorbiendo una molécula por cada sitio; de este proceso matemático se obtiene la relación entre la cantidad de adsorbato retenido por la unidad de masa de adsorbente [mg/g], para así determinar la capacidad de adsorción.
9. RECOMENDACIONES

- Realizar la caracterización total del material bioadsorbente incluyendo propiedades físicas y químicas como: tamaño de partícula, área superficial y porcentaje de porosidad, ya que estas variables influyen en el proceso de biosorción.
- Realizar el proceso de biosorción teniendo en cuenta los factores de pH y diferentes concentraciones iniciales para determinar en cuál de estos parámetros se realiza la mayor adsorción del contaminante.
- Aumentar el tiempo de contacto del bioadsorbente con la solución acuosa contaminada, pasa así establecer si la adsorción llega a incrementar o pase a un estado de desorción.
- Se recomienda realizar el análisis bromatológico inicial y final para determinar la cantidad de nutrientes que posee el bioadsorbente antes de ser expuesto a un contaminante y después de realizar el proceso de bioadsorción.
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL *Moringa oleifera*
10. ANEXOS

Anexo A. Protocolo de recolección de vainas especie arbórea: *Moringa oleifera.*
BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL *Moringa oleifera*

OBJETIVO

Recolectar vainas secas de las especies vegetales de *Moringa oleifera* y para deshidratación completa que posteriormente serán sometidos a los procedimientos respectivos de Elaboración de mercurio.

ALCANCE

Realizar el procedimiento de recolección de las vainas secas de las especies anónimas *Moringa oleifera* mediante recolecta directa, para sus posteriores tratamientos. Los procedimientos provistos a la molanda de las vainas, estarán en la universidad de Cundinamarca, Bogotá, dándole a la Universidad de Cundinamarca el número 14-209 del municipio de Girardot - Cundinamarca, con las siguientes coordenadas: latitud 4°18’25’’ Norte y longitud 74°48’29’’ Oeste (Google Earth, 2018).

MATERIALES Y EQUIPOS

- Gramera o balanza analítica
- Tijeras para cortar

RESPONSABLES:

- Erika Juliana Villaba Cortés
- Stefania Oviedo Tapia

Estudiantes de Ingeniería Ambiental UDEC

METODOLOGÍA

Paso 1. Identificación y descripción de los árboles.
Paso 2. Elenco sistemático de los árboles de donde extrajeron las vainas.
Paso 3. Registro de los árboles escogidos.
Paso 4. Registro manual de las vainas o cápsulas.
Paso 5. Conteo de vainas.
Paso 6. Medición y medición de las vainas recolectadas (individual y total) con las tailas.
Paso 7. Extracción de semillas.

Paso 8. Pasaje de las vainas recolectadas (individual y total) sin las semillas, para el casco del algarrobo todo incluido.

Paso 10. Rotular cada bolsa con la cantidad, paso y fecha de la recolección.

Paso 11. Secado a una temperatura de 40° por 41 horas en un horno merimer.

Paso 12. Realizar pro molinado manual con tijeras cortando las vainas en 5 cm.

Paso 13. Secado a temperatura ambiente por dos días.

Paso 14. Molienda con licuadora casera Osterizer y tamizaje a 2 mm.

Paso 15. Empaque y pesaje del polvo resultante.

Paso 16. Envío de 500 g de materia seca previamente molida a laboratorio Lassave-Universidad del Tolima, Itagüí.

Flujograma:

<table>
<thead>
<tr>
<th>No.</th>
<th>Flujograma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1.</td>
<td>Identificación y descripción de los árboles.</td>
</tr>
<tr>
<td>Paso 2.</td>
<td>Escoger aleatoriamente los árboles de donde extraerán las vainas.</td>
</tr>
<tr>
<td>Paso 3.</td>
<td>Registro de los árboles escogidos.</td>
</tr>
<tr>
<td>Paso 4.</td>
<td>Recolección manual de las vainas o capullos.</td>
</tr>
<tr>
<td>Paso 5.</td>
<td>Conteo de vainas.</td>
</tr>
<tr>
<td>Paso 6.</td>
<td>Pasaje y medición de las vainas recolectadas (individual y total) con las semillas.</td>
</tr>
<tr>
<td>Paso 7.</td>
<td>Extracción de semillas.</td>
</tr>
</tbody>
</table>
La bioadsorción del mercurio en agua tratada, mediante el uso de vainas de la especie vegetal *Moringa oleifera*

Paso 6. Pesaje de las vainas recolectadas (individual y total) en las semillas, para el caso del algodón todo incluido.

Paso 7. Almacenamiento de las vainas en bolsas ziploc.

Paso 9. Moler cada bolsa con peso y fecha de recolección.

Paso 11. Saco de una temperatura de 80° por 41 horas.

Paso 12. Realizar pre moler ace tranquil cuando se per se las vainas en 5 cm.

Paso 13. Secado a temperatura ambiente por dos días.

Paso 14. Moler con licuadora casera Osterizer y tornizaje a 2 mm.

Paso 15. Envasar y pesaje del polvo resultante.

Paso 16. Envío de 500 g de materia prima al laboratorio Laserex Universidad del Tolima, Ibagué.

Imagen 1. Proceso de recolección y empaque de las vainas de *Moringa oleifera*
REFERENCIAS

Asociación Española para la Cultura, el Arte y la Educación. (s.f.). Natureduca. Obtenido de Botánica: http://www.natureduca.com/botan_orga
n_hojas1.php

_PoozrkC&pg=PA51&dq=prosopis+juliflora+taninos&source=bl&ots=gg2015qVxh&sig=xNQzvl-m5w2EwYd8IFdxmhbioS&hl=es-
419&sa=X&ved=0ahUKEwjS4d3IzTaTLAhXLGhQRK6AEIUTAJ#v=onepage&q&f=false
Anexo B. Cuantificación de taninos por el método analítico de espectrofotometría ultravioleta-visible.
BIOADSORCIÓN DEL MERCURO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL *Moringa oleifera*

Anexo C. Análisis de espectrofotometría de adsorción de los iones de Hg$^{+2}$.

INFORME N° A1 (15 36-1 144)

VINCULACIÓN DE CONOCIMIENTO Y TECNOLOGÍA

Reporte de Resultados: Laboratorio de Servicios para varias Muestras

Código: VC_F_115
Versión: 2
Fecha de vigencia: (01-02-2010)

LABORATORIO DE QUÍMICA DE SUELOS - AGUAS Y PLANTAS

1. Información del cliente

Nombre: DANIEL CUBILLOS
Celéfono/Fax: 11044512
Ocupación:
Municipio: CUNDINAMARCA
Teléfono: 3214225563
Correo electrónico:

2. Información de la muestra

Muestra: AGUA
Procedencia: NO INDICA
Fecha de recolección: 2016-09-20
Fecha de reporte: 2016-10-31

DETERMINACIÓN ANALÍTICA

<table>
<thead>
<tr>
<th>NOMBRE DE MUESTRA</th>
<th>RESULTADO</th>
<th>UNIDADES</th>
<th>METODOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRATAMIENTO 1</td>
<td>75 ppm</td>
<td>µg/l</td>
<td>SM1120 8</td>
</tr>
<tr>
<td>TRATAMIENTO 2</td>
<td>52 ppm</td>
<td>µg/l</td>
<td>SM1120 8</td>
</tr>
<tr>
<td>TRATAMIENTO 3</td>
<td>73 ppm</td>
<td>µg/l</td>
<td>SM1120 8</td>
</tr>
<tr>
<td>BLANCO</td>
<td>95 ppm</td>
<td>µg/l</td>
<td>SM1120 8</td>
</tr>
</tbody>
</table>

OBSERVACIONES:

Este documento ha sido emitido por la Corporación de Investigación Cundinamarca - Corporica.

FIN DEL INFORME

Página 1 de 1
11. BIBLIOGRAFÍA

BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

BIOADSORCIÓN DEL MERCURIO EN AGUA TRATADA, MEDIANTE EL USO DE VAINAS DE LA ESPECIE VEGETAL Moringa oleifera

- Triviño L., Hernández C., 2016. Evaluación de la capacidad de bioadsorción de Pb (ii) y Cd (ii) presentes en soluciones sintéticas independientes empleando retamo espinoso (Ulex europaeus) como adsorbente. Bogotá D.C.
- Volesky, B. (2003). Sorption and biosorption. BV Sorbex, St. Lambert, Quebec.