FECHA: Martes, 29 de mayo de 2018

Señores
UNIVERSIDAD DE CUNDINAMARCA
BIBLIOTECA
Ciudad

<table>
<thead>
<tr>
<th>UNIDAD REGIONAL</th>
<th>Extensión Soacha</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO DE DOCUMENTO</td>
<td>Trabajo de Grado</td>
</tr>
<tr>
<td>FACULTAD</td>
<td>Ingeniería</td>
</tr>
<tr>
<td>NIVEL ACADEMICO DE FORMACION O PROCESO</td>
<td>Pregrado</td>
</tr>
<tr>
<td>PROGRAMA ACADEMICO</td>
<td>Ingeniería Industrial</td>
</tr>
</tbody>
</table>

El Autor(Es):

<table>
<thead>
<tr>
<th>APELLIDOS COMPLETOS</th>
<th>NOMBRES COMPLETOS</th>
<th>No. DOCUMENTO DE IDENTIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polanco Andrade</td>
<td>Yesica Lorena</td>
<td>1.022.419.998</td>
</tr>
<tr>
<td>Orozco Vega</td>
<td>Vanessa Carolina</td>
<td>1.023.929.330</td>
</tr>
</tbody>
</table>

Director(Es) y/o Asesor(Es) del documento:

<table>
<thead>
<tr>
<th>APELLIDOS COMPLETOS</th>
<th>NOMBRES COMPLETOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubiano Forero</td>
<td>Jefferson Adalmer</td>
</tr>
</tbody>
</table>
TÍTULO DEL DOCUMENTO

“DISEÑO DE UN SISTEMA PRODUCTIVO DE TELA POLIÉSTER DE PUNTO Y BOTONES A PARTIR DE LA HOJUELA PET Y EL GRANULÓ PP PROVENIENTE DE ENVASES PLÁSTICOS DESECHADOS EN EL MUNICIPIO DE SOACHA-CUNDINAMARCA”

SUBTÍTULO

(Aplica solo para Tesis, Artículos Científicos, Disertaciones, Objetos Virtuales de Aprendizaje)

TRABAJO PARA OPTAR AL TÍTULO DE:

Aplica para Tesis/Trabajo de Grado/Pasantía

Ingeniero Industrial

AÑO DE EDICION DEL DOCUMENTO NÚMERO DE PÁGINAS

Mayo 16 del 2018 162

DECLARACIÓN DE AUTORÍA

El presente documento fue elaborado por...

1. Polímero Polymer
2. Recipiente Container
3. Tratamiento de residuos Waste treatment
4. Producción industrial Industrial production
5. Gestión de recursos Resource management
6. Producto textil Textile product
RESUMEN

Este trabajo de grado surge de la necesidad de aprovechar envases plásticos desechados en el municipio de Soacha en la producción de tela poliéster de punto y botones, fase II del macro proyecto "Análisis de la producción, aprovechamiento y manejo de los residuos sólidos en la industria de plásticos en el municipio de Soacha" del semillero de investigación para el emprendimiento y desarrollo empresarial SIEDES-GIPIA (Grupo de investigación de procesos industriales y ambientales). El trabajo de investigación está dividido en tres fases secuenciales: Fase 1, pruebas de laboratorio físico-químicas con el propósito de determinar las propiedades de los materiales PET y PP. Fase 2, se establecen los procesos a seguir para la obtención del producto terminado, así como también, los cálculos de capacidades por máquina, planeación agregada y modelos de inventario con costos mínimos en términos de mantener existencias en inventario y pedir la materia prima. Por último, en la Fase 3 se representa el sistema utilizando el software Arena v14.0, seguida de un análisis de índices de productividad parcial y total del sistema en conjunto, dando como resultado que para el día 360 se ha procesado la totalidad en pedidos prevista para el horizonte de planeación de 45.3% para la tela y 66.8% para los botones, con unas salidas de 1.305.000 metros y 1.101.000 botones plásticos respectivamente. De esta manera se logró diseñar un sistema productivo Push aprovechando un 16% de PP y 21% de PET que componen el envase plástico.

ABSTRACT

This degree work arises from the need to take advantage of plastic containers discarded in the municipality of Soacha in the production of polyester fabric of point and buttons, phase II of the macro project "Analysis of the production, utilization and management of solid waste in the plastics industry in the municipality of Soacha" of the hotbed of research for entrepreneurship and business Development SIEDES-GIPIA (research group on industrial and environmental processes). The research work is divided into three sequential phases: Phase 1, physical-chemical laboratory tests with the purpose of determining the properties of the PET and PP materials. Phase 2, the processes to be followed are established to obtain the finished product, as well as the calculations of capacity by machine, aggregate planning and inventory models with minimum costs in terms of maintaining inventory stocks and ordering the Raw material. Finally, in Phase 3 the system is represented using the software Arena v14.0, followed by an analysis of indices of partial and total productivity of the system as a whole, resulting in that for the day 360 has been processed the totality in orders planned for the Planning horizon of 45.3% for the fabric and 66.8% for the buttons, with outputs of 1.305.000 meters and 1.101.000 plastic buttons respectively. This way it was possible to design a productive system Push using 16% of PP and 21% of PET that make up the plastic container.
AUTORIZACION DE PUBLICACION

Por medio del presente escrito autorizo (Autorizamos) a la Universidad de Cundinamarca para que, en desarrollo de la presente licencia de uso parcial, pueda ejercer sobre mi (nuestra) obra las atribuciones que se indican a continuación, teniendo en cuenta que, en cualquier caso, la finalidad perseguida será facilitar, difundir y promover el aprendizaje, la enseñanza y la investigación.

En consecuencia, las atribuciones de usos temporales y parciales que por virtud de la presente licencia se autoriza a la Universidad de Cundinamarca, a los usuarios de la Biblioteca de la Universidad; así como a los usuarios de las redes, bases de datos y demás sitios web con los que la Universidad tenga perfeccionado una alianza, son:

Marque con una “X”:

<table>
<thead>
<tr>
<th>AUTORIZO (AUTORIZAMOS)</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La reproducción por cualquier formato conocido o por conocer.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. La comunicación pública por cualquier procedimiento o medio físico o electrónico, así como su puesta a disposición en Internet.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. La inclusión en bases de datos y en sitios web sean éstos onerosos o gratuitos, existiendo con ellos previa alianza perfeccionada con la Universidad de Cundinamarca para efectos de satisfacer los fines previstos. En este evento, tales sitios y sus usuarios tendrán las mismas facultades que las aquí concedidas con las mismas limitaciones y condiciones.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. La inclusión en el Repositorio Institucional.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización.

Para el caso de las Tesis, Trabajo de Grado o Pasantía, de manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante(s) y por ende autor(es) exclusivo(s), que la Tesis, Trabajo de Grado o Pasantía en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único(s) titular(es) de la misma. Además, aseguro (aseguramos) que no
contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestra) competencia exclusiva, eximiendo de toda responsabilidad a la Universidad de Cundinamarca por tales aspectos.

Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuará (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor.

De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Universidad de Cundinamarca está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.

NOTA: (Para Tesis, Trabajo de Grado o Pasantía):

Información Confidencial:

Esta Tesis, Trabajo de Grado o Pasantía, contiene información privilegiada, estratégica, secreta, confidencial y demás similar, o hace parte de la investigación que se adelanta y cuyos resultados finales no se han publicado.

SI _X_ NO _

En caso afirmativo expresamente indicará (indicaremos), en carta adjunta tal situación con el fin de que se mantenga la restricción de acceso.

LICENCIA DE PUBLICACIÓN

Como titular(es) del derecho de autor, confiero(ermos) a la Universidad de Cundinamarca una licencia no exclusiva, limitada y gratuita sobre la obra que se integrará en el Repositorio Institucional, que se ajusta a las siguientes características:
a) Estará vigente a partir de la fecha de inclusión en el repositorio, por un plazo de 5 años, que serán prorrogables indefinidamente por el tiempo que dure el derecho patrimonial del autor. El autor podrá dar por terminada la licencia solicitándolo a la Universidad por escrito. (Para el caso de los Recursos Educativos Digitales, la Licencia de Publicación será permanente).

b) Autoriza a la Universidad de Cundinamarca a publicar la obra en formato y/o soporte digital, conociendo que, dado que se publica en Internet, por este hecho circula con un alcance mundial.

c) Los titulares aceptan que la autorización se hace a título gratuito, por lo tanto, renuncian a recibir beneficio alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente licencia y de la licencia de uso con que se publica.

d) El(LOS) Autor(es), garantizo(amos) que el documento en cuestión, es producto de mi(nuestra) plena autoría, de mi(nuestro) esfuerzo personal intelectual, como consecuencia de mi(nuestra) creación original particular y, por tanto, soy(somos) el(los) único(s) titular(es) de la misma. Además, aseguro(aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en pro porción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos es de mi (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Universidad de Cundinamarca por tales aspectos.

e) En todo caso la Universidad de Cundinamarca se compromete a indicar siempre la autoría incluyendo el nombre del autor y la fecha de publicación.

f) Los titulares autorizan a la Universidad para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.

g) Los titulares aceptan que la Universidad de Cundinamarca pueda convertir el documento a cualquier medio o formato para propósitos de preservación digital.

h) Los titulares autorizan que la obra sea puesta a disposición del público en los términos autorizados en los literales anteriores bajo los límites definidos por la universidad en el “Manual del Repositorio Institucional AAAM003”

i) Para el caso de los Recursos Educativos Digitales producidos por la Oficina de Educación Virtual, sus contenidos de publicación se rigen bajo la Licencia Creative Commons: Atribución- No comercial- Compartir Igual.
j) Para el caso de los Artículos Científicos y Revistas, sus contenidos se rigen bajo la Licencia Creative Commons Atribución- No comercial- Sin derivar.

Nota:
Si el documento se basa en un trabajo que ha sido patrocinado o apoyado por una entidad, con excepción de Universidad de Cundinamarca, los autores garantizan que se ha cumplido con los derechos y obligaciones requeridos por el respectivo contrato o acuerdo.

La obra que se integrará en el Repositorio Institucional, está en el(los) siguiente(s) archivo(s).

<table>
<thead>
<tr>
<th>Nombre completo del Archivo Incluida su Extensión (Ej. Perez Juan2017.pdf)</th>
<th>Tipo de documento (ej. Texto, imagen, video, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DISEÑO DE UN SISTEMA PRODUCTIVO DE TELA POLIÉSTER DE PUNTO Y BOTONES A PARTIR DE LA HOJUELA PET Y EL GRANULO PP PROVENIENTE DE ENVASES PLÁSTICOS DESECHADOS EN EL MUNICIPIO DE SOACHA-CUNDINAMARCA.pdf</td>
<td>TEXTO</td>
</tr>
<tr>
<td>2. CORRIDA SIMULACIÓN DEL PROCESO PRODUCTIVO.avi</td>
<td>VIDEO</td>
</tr>
<tr>
<td>3. REPORTES SIMULACIÓN FASE III.pdf</td>
<td>TEXTO</td>
</tr>
</tbody>
</table>

En constancia de lo anterior, Firma (amos) el presente documento:

<table>
<thead>
<tr>
<th>APELLIDOS Y NOMBRES COMPLETOS</th>
<th>FIRMA (autógrafa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polanco Andrade Yesica Lorena</td>
<td>[Firma]</td>
</tr>
<tr>
<td>Orozco Vega Vanessa Carolina</td>
<td>[Firma]</td>
</tr>
</tbody>
</table>
DISEÑO DE UN SISTEMA PRODUCTIVO DE TELA POLIÉSTER DE PUNTO Y BOTONES A PARTIR DE LA HOJUELA PET Y EL GRANULO PP PROVENIENTE DE ENVASES PLÁSTICOS DESECHADOS EN EL MUNICIPIO DE SOACHA-CUNDINAMARCA

VANESSA CAROLINA OROZCO VEGA
YESICA LORENA POLANCO ANDRADE

UNIVERSIDAD DE CUNDINAMARCA
FACULTAD DE INGENIERÍA
INGENIERÍA INDUSTRIAL
SOACHA
2018
DISEÑO DE UN SISTEMA PRODUCTIVO DE TELA POLIÉSTER DE PUNTO Y BOTONES A PARTIR DE LA HOJUELA PET Y EL GRANULO PP PROVENIENTE DE ENVASES PLÁSTICOS DESECHADOS EN EL MUNICIPIO DE SOACHA-CUNDINAMARCA

VANESSA CAROLINA OROZCO VEGA
YESICA LORENA POLANCO ANDRADE

TRABAJO DE GRADO
REQUISITO PARA OPTAR POR EL TÍTULO DE INGENIERO INDUSTRIAL

DIRECTOR
ING. JEFFERSON RUBIANO FORERO

UNIVERSIDAD DE CUNDINAMARCA
FACULTAD DE INGENIERÍA
INGENIERÍA INDUSTRIAL
SOACHA
2018
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Beneficios del reciclaje</td>
<td>21</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Estructura análisis de máquina</td>
<td>35</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Cálculo de tiempos</td>
<td>36</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Calculo de la capacidad de producción</td>
<td>37</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Calculo de la eficiencia</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>Calculo de la productividad</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>Identificación de Polímeros</td>
<td>60</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>Variables detectadas a partir de la identificación de polímeros.</td>
<td>60</td>
</tr>
<tr>
<td>Tabla 9</td>
<td>Resultados de la Prueba de Beilstein</td>
<td>61</td>
</tr>
<tr>
<td>Tabla 10</td>
<td>Registro de los pesos de los diferentes materiales</td>
<td>63</td>
</tr>
<tr>
<td>Tabla 11</td>
<td>Variables detectadas a partir de la exposición a temperaturas.</td>
<td>64</td>
</tr>
<tr>
<td>Tabla 12</td>
<td>Resultados obtenidos práctica exposición a temperaturas.</td>
<td>65</td>
</tr>
<tr>
<td>Tabla 13</td>
<td>Datos cuantificados de la práctica de exposición a temperaturas</td>
<td>65</td>
</tr>
<tr>
<td>Tabla 14</td>
<td>Datos adicionales PP</td>
<td>69</td>
</tr>
<tr>
<td>Tabla 15</td>
<td>Datos adicionales PS</td>
<td>69</td>
</tr>
<tr>
<td>Tabla 16</td>
<td>Resistencia a la Abrasión (ASTM D4966) efectuada a la tela ecológica</td>
<td>71</td>
</tr>
<tr>
<td>Tabla 17</td>
<td>Ruptura y resistencia de las fibras textiles</td>
<td>73</td>
</tr>
<tr>
<td>Tabla 18</td>
<td>Resistencia a la tensión efectuada a la tela ecológica</td>
<td>74</td>
</tr>
<tr>
<td>Tabla 19</td>
<td>Ruptura y resistencia de las fibras textiles</td>
<td>75</td>
</tr>
<tr>
<td>Tabla 20</td>
<td>Cambios de color en agua de la tela ecológica</td>
<td>76</td>
</tr>
<tr>
<td>Tabla 21</td>
<td>Selección de la maquinaria para la producción de tela poliéster</td>
<td>84</td>
</tr>
<tr>
<td>Tabla 22</td>
<td>Proyección anual de recuperacion por tipo de resina en el municipio</td>
<td>85</td>
</tr>
<tr>
<td>Tabla 23</td>
<td>Lote a Lote - Inventario cero para la producción de tela poliéster</td>
<td>87</td>
</tr>
<tr>
<td>Tabla 24</td>
<td>Modelo POQ para la producción de tela poliéster</td>
<td>90</td>
</tr>
<tr>
<td>Tabla 25</td>
<td>Planeación agregada con trabajo constante para la producción de tela poliéster</td>
<td>91</td>
</tr>
<tr>
<td>Tabla 26</td>
<td>Consolidado de relación de variables de análisis con la maquinaria del proceso de tela poliéster.</td>
<td>92</td>
</tr>
<tr>
<td>Tabla 27</td>
<td>Tiempos para la medición de la capacidad para el proceso de tela poliéster.</td>
<td>93</td>
</tr>
<tr>
<td>Tabla 28</td>
<td>Capacidad real del ciclo productivo general para la obtención de tela poliéster</td>
<td>94</td>
</tr>
<tr>
<td>Tabla 29</td>
<td>Selección de la maquinaria por proceso para la producción de botones plásticos</td>
<td>96</td>
</tr>
<tr>
<td>Tabla 30</td>
<td>Lote a Lote - Inventario cero para la producción de botones plásticos</td>
<td>98</td>
</tr>
<tr>
<td>Tabla 31</td>
<td>Modelo POQ para la producción de botones plástico</td>
<td>101</td>
</tr>
<tr>
<td>Tabla 32</td>
<td>Planeación agregada con trabajo constante para la producción de botones plásticos</td>
<td>102</td>
</tr>
<tr>
<td>Tabla 33</td>
<td>Consolidado de relación de variables de análisis con maquinaria del proceso de botones plásticos.</td>
<td>103</td>
</tr>
<tr>
<td>Tabla 34</td>
<td>Tiempos para la medición de la capacidad para el proceso de tela poliéster.</td>
<td>104</td>
</tr>
<tr>
<td>Tabla 35</td>
<td>Capacidad real del ciclo productivo general para la obtención de botones plásticos</td>
<td>105</td>
</tr>
<tr>
<td>Tabla 36</td>
<td>Datos implementados en la simulación</td>
<td>108</td>
</tr>
<tr>
<td>Tabla 37</td>
<td>Productividad por producto</td>
<td>113</td>
</tr>
<tr>
<td>Tabla 38</td>
<td>Productividad Parcial de tela y botones</td>
<td>114</td>
</tr>
</tbody>
</table>
LISTA DE DIAGRAMAS

Diagrama 1 Obtención de escama plástica 50
Diagrama 2 Diagrama de bloques del proceso de planeamiento y control en fabricación de tela y botones. 54
Diagrama 3 Síntesis de la metodología 56
Diagrama 4 Fase I: Realización de pruebas de laboratorio 57
Diagrama 5 Fase 2: Proceso de producción 79
Diagrama 6 Diagrama de operaciones para la producción de tela poliéster PET 81
Diagrama 7 Despliegue de la casa de la calidad 83
Diagrama 8 Diagrama de operaciones para la producción de Botones Plásticos (PP) 95
Diagrama 9 Fase 3: Simulación del proceso productivo 107
LISTA DE FIGURAS

Figura 1 Ejemplo Plan de Inventario Cero 33
Figura 2 Localización de la planta, vereda canoas 47
Figura 3 Obtención de las escamas plásticas 58
Figura 4 Prueba de Beilstein. Calentamiento del alambre de cobre 59
Figura 5 Contacto del cobre con fragmentos de tapas de bebidas 59
Figura 6 Resultado de la prueba de Beilstein aplicada en las tapas de bebidas 59
Figura 7 Tela poliéster común 70
Figura 8 Tela ecológica obtenida a partir de botellas plásticas desechadas 70
Figura 9 Textil abrasión Martindale Máquina de prueba 72
Figura 10 Resultado de la prueba de abrasión (Método Martindale). 72
Figura 11 Cambios de color en agua de la tela ecológica 76
Figura 12 Pronóstico enero 2023 mediante suavización exponencial a través de software Excel QM 85
Figura 13 Modelo EOQ para la producción de tela poliéster a través del software Excel QM 88
Figura 14 Pronóstico enero 2023 mediante suavización exponencial a través de software Excel QM 97
Figura 15 Modelo EOQ para la producción de botones plásticos a través del software Excel QM 99
Figura 16 Ingreso de datos al simulador Arena 109
Figura 17 Entidades por arribo 109
Figura 18 muestra de las entradas, procesos y salidas, en la simulación 2D 110
LISTA DE GRÁFICAS

Gráfica 1 Resultados de la Prueba de Beilstein 61
Gráfica 2 Tipo de polímero según el olor de la llama 63
Gráfica 3 Resultados exposición a temperaturas 66
Gráfica 4 Temperatura de fusión según el material 67
Gráfica 5 Cambios evidenciados según temperaturas de fusión 68
Gráfica 6 Resistencia a la tensión y porcentaje de elongación del material mediante método interno para la tela ecológica verde limón. 74
Gráfica 7 Modelo EOQ para la producción de tela poliéster tamaño de la orden vs. costos 89
Gráfica 8 Modelo EOQ para la producción de botones plásticos 100
Gráfica 9 Comportamiento de la simulación-Tela 115
Gráfica 10 Comportamiento de la simulación- Botones 115
ANEXOS

Anexo A Evidencia fotográfica visita Laguna Tierra Blanca 127
Anexo B Ficha técnica visita Laguna Tierra Blanca 127
Anexo C Ficha técnica primera salida de campo Comuna 1 Soacha 128
Anexo D Vista interna de la bodega 129
Anexo E Materiales encontrados dentro de la bodega 129
Anexo F Evidencia fotográfica Fase 1: Pruebas de laboratorio 130
Anexo G Peso de las escamas de plástico más el vidrio de reloj 130
Anexo H Peso barra de aluminio 131
Anexo I Calentamiento de las escamas de plástico 131
Anexo J Reacción del polipropileno con el fuego 132
Anexo K Ficha técnica de la maquina Extrusora Intarema 1716 TVEplus 133
Anexo L Ficha técnica de máquina manuar Truetzschler-Toyota Superlap TSL 134
Anexo M Ficha técnica de la Tejedora circular orizio jersey de punto 135
Anexo N Ficha técnica de la maquina lavadora teñidora LVT 400 136
Anexo O Ficha técnica de la maquina automática cortadora y rebobinadora 137
Anexo P Ficha técnica de la banda transportadora lineal con cinturón PU/PVC 138
Anexo Q Ficha técnica máquina de moldeo por inyección tipo híbrido FVX 1100 II 139
 III–600 L 139
Anexo R Cálculo de la capacidad de producción de la extrusora Erema Intarema 1716 TVEplus 140
Anexo S Cálculo de la capacidad de producción del manuar Truetzschler-Toyota Superlap TSL 12 con rodillos de goma 143
Anexo T Cálculo de la capacidad de producción de la tejedora circular orizio jersey de punto 146
Anexo U Cálculo de la capacidad de producción de la teñidora, lavadora y secadora Efamein LVT400 149
Anexo V Cálculo de la capacidad de producción de la maquina automática cortadora y rebobinadora 152
Anexo W Cálculo de la capacidad de producción de la cinta transportadora lineal con cinturón PU/PVC 155
Anexo X Cálculo de la capacidad de producción de la máquina de moldeo por inyección de gran tamaño tipo híbrido FVX 1100 III- 600 L 158
Anexo Y Casa de la calidad - maquinaria 162
Anexo Z Producción nacional tela poliéster 162
Anexo AA Producción nacional botones plásticos 162
Anexo BB Reportes simulación software Arena 162
Anexo CC Video corrida simulación proceso productivo 162
RESUMEN

Este trabajo de grado surge de la necesidad de aprovechar envases plásticos desechados en el municipio de Soacha en la producción de tela poliéster de punto y botones, fase II del macro proyecto “Análisis de la producción, aprovechamiento y manejo de los residuos sólidos en la industria de plásticos en el municipio de Soacha” del semillero de investigación para el emprendimiento y desarrollo empresarial SIEDES-GIPIA (Grupo de investigación de procesos industriales y ambientales). El trabajo de investigación está dividido en tres fases secuenciales: Fase 1, pruebas de laboratorio físico-químicas con el propósito de determinar las propiedades de los materiales PET y PP\(^1\). Fase 2, se establecen los procesos a seguir para la obtención del producto terminado, así como también, los cálculos de capacidades por máquina, planeación agregada y modelos de inventario con costos mínimos en términos de mantener existencias en inventario y pedir la materia prima. Por último, en la Fase 3 se representa el sistema utilizando el software Arena v14.0, seguida de un análisis de índices de productividad parcial y total del sistema en conjunto, dando como resultado que para el día 360 se ha procesado la totalidad en pedidos prevista para el horizonte de planeación de 45,3% para la tela y 66,8% para los botones, con unas salidas de 1.305.000 metros y 1.101.000 botones plásticos respectivamente. De esta manera se logró diseñar un sistema productivo Push aprovechando un 16% de PP y 21% de PET que componen el envase plástico.

Palabras clave: Tereftalato de Polietileno, Polipropileno, sistema de producción, manejo de residuos plásticos, productos ecológicos, productos textiles.

\(^1\) PET: Tereftalato de Polietileno, PP: Polipropileno.
ABSTRACT

This degree work arises from the need to take advantage of plastic containers discarded in the municipality of Soacha in the production of polyester fabric of point and buttons, phase II of the macro project "Analysis of the production, utilization and management of solid waste in The plastics industry in the municipality of Soacha" of the hotbed of research for entrepreneurship and business Development SIEDES-GIPIA (research group on industrial and environmental processes). The research work is divided into three sequential phases: Phase 1, physical-chemical laboratory tests with the purpose of determining the properties of the PET and PP materials. Phase 2, the processes to be followed are established to obtain the finished product, as well as the calculations of capacity by machine, aggregate planning and inventory models with minimum costs in terms of maintaining inventory stocks and ordering the Raw material. Finally, in Phase 3 the system is represented using the software Arena v14.0, followed by an analysis of indices of partial and total productivity of the system as a whole, resulting in that for the day 360 has been processed the totality in orders planned for the Planning horizon of 45.3% for the fabric and 66.8% for the buttons, with outputs of 1.305.000 meters and 1.101.000 plastic buttons respectively. This way it was possible to design a productive system Push using 16% of PP and 21% of PET that make up the plastic container.

Keywords: Polyethylene terephthalate, polypropylene, production system, plastic waste management, organic products, textile products.
INTRODUCCIÓN

Actualmente, la conciencia ambiental juega un papel importante debido al alto grado de contaminación a nivel mundial reflejado en materiales poliméricos que tardan en degradarse hasta 1.000 años (Raichev, Veleva, & Valdez, 2009). Dentro de estos materiales cabe resaltar el Tereftalato de Polietileno (PET) y el Polipropileno (PP) como uno de los más empleados en la industria de envases no retornables para bebidas (Kutz, 2011); evidenciado en los más de 1.500 millones de botellas plásticas desechadas al año en Colombia que generan contaminación en fuentes hídricas, campos y calles (Eko - Enka de Colombia).

Debido a su composición y origen derivado del petróleo (recurso agotable), el PET es un poliéster termoplástico con grandes características que lo hacen ser uno de los polímeros más utilizados hoy día, entre estas se encuentra, su rapidez de enfriamiento, la cual favorece su transparencia y resistencia en envases, baja absorción de la humedad y buena recuperación de las fibras, haciéndolo ideal para la producción de textiles resistentes al lavado y al planchado sin deformación en sus filamentos (Groover M., 1997). Por otro lado el PP es un material polimérico que cuenta con excelentes propiedades mecánicas, eléctricas y químicas; estos plásticos post-consumo representan un residuo de alto valor, al cual se le puede dar provecho mediante su recuperación y abundante existencia en centros de acopio (Ortiz Hernández, 2013), es por esto, que se tiene como objeto aprovechar y transformar dichos productos en materias primas útiles para la obtención de tela poliéster y botones plásticos dentro de un sistema productivo, que contribuya al desarrollo del sector textil en Soacha e incentiva la cultura ecológica en la misma. Para lograrlo, se caracterizarán los materiales PET y PP contrastándolos con los productos textiles que se encuentran hoy día en el mercado colombiano, permitiendo determinar las propiedades y beneficios que tiene un material sobre otro. Posteriormente, se diseñará un sistema productivo que describa las operaciones y maquinaria necesaria dentro de la capacidad instalada para la obtención de botones plásticos y tela poliéster como producto terminado, a través del plan maestro de producción –MPS- y el estudio de tiempos por tarea, dando paso a la simulación de las condiciones de trabajo, maquinaria y proceso.
1. PLANTEAMIENTO DEL PROBLEMA

Desde el comienzo de la humanidad el hombre ha tenido la necesidad de sobrevivir a las diferentes condiciones ambientales evidenciadas con el transcurrir del tiempo, tanto así, que es el único ser vivo con inteligencia capaz de crear objetos que aporten a la preservación de su existencia (García, 2016); de igual manera, se ha encargado de ser el principal causante del daño al medio ambiente por su constante acumulación de residuos sólidos que ocasionan contaminación y deterioro al ecosistema, demostrado en países como Colombia, que para el 2008 contó con una producción de 28.800 toneladas diarias de residuos sólidos, (Ministerio de Ambiente y Desarrollo Sostenible, 2012) siendo este un aumento considerable de contaminantes causado por el consumismo y la ausencia de cultura en la población. (Rodríguez, 2011).

Así mismo, se considera que la conciencia ambiental desempeña un rol trascendental, ya que las alteraciones de hoy en día sobre el medio ambiente son principalmente por actividades antropogénicas ya sea por el desarrollo industrial, el consumismo, la contaminación, los residuos sólidos, etc., por lo que es de gran importancia lograr un equilibrio entre la naturaleza y el hombre (Ramos, Ramírez, Sanchez, Novoa, & Gaxiola, 2013).

Dentro de los residuos sólidos que causan sobrecalentamiento global a nivel mundial se encuentran los residuos plásticos, debido a su composición, propiedades físico-químicas y origen derivado del petróleo, los plásticos son residuos altamente empleados, desechados y contaminantes del medio ambiente, causados en gran medida por la acumulación de los mismos en calles, fuentes hídricas, fauna, flora y ecosistemas.

Entre los datos recolectados por la organización global independiente Greenpeace de la situación actual de la contaminación de plásticos a nivel mundial plasmados en su documento titulado “Un millón de acciones contra el plástico” se evidencia que desde su aparición en 1950 hasta hoy, se han fabricado 8,3 mil millones de toneladas, del cual tan solo el 9% del plástico se ha reciclado, el 12% se ha incinerado (lo que genera gases de efecto invernadero) y el 79% restante termina en vertederos o en el medio ambiente; otro dato significativo es que unos 12,7 millones de toneladas terminan en océanos cada año siendo un problema para las especies marinas y las diferentes comunidades que viven cerca a estos vertederos, a nivel mundial se considera a China, Indonesia, Filipina, Vietnam, Sri Lanka, Tailandia; Egipto, Malasia, Nigeria, Bangladesh, Sudáfrica, India, Argelia, Turquía, Pakistán, Brasil, Myanmar, Marruecos, Corea del Norte y Estados Unidos como los primeros 20 países que en función a la cantidad de residuos de pasticos

2 Se refiere a los efectos, procesos o materiales que son el resultado de actividades humanas, a diferencia de los que tienen causas naturales sin influencia humana.
gestionados de forma inadecuada son los más contaminantes, según una investigación publicada en el 2010 por la revista Science. (Greenpeace, 2018)

El tereftalato de polietileno (PET) obtenido a través de botellas plásticas está constituido de: “petróleo crudo, gas y aire. Un kilo de PET es 64% de petróleo, 23% de derivados líquidos del gas natural y 13% de aire” (Ministerio de Ambiente, 2004). Para su producción se necesitan 17,5 kilos de agua emitiendo al medio ambiente 2,3 kilos de dióxido de carbono (Ecoestrategia.com), siendo este mismo un gas nocivo para la salud del ser humano debido a su concentración 1.000 veces superior a la de cualquier otro producto de origen industrial (Concejialía de Medio Ambiente), el tiempo de degradación del PET es de más de 100 años (Enka de Colombia); por otro lado, a partir de las tapas que componen el envase, el polipropileno (PP) es un hidrocarburo que se obtiene por polimerización del propileno (gas resultante como subproducto de la industria petroquímica) utilizando catalizadores de tipo Ziegler Natta o Metallocenos3 para su reacción (Ministerio de Ambiente, 2004) generando por ende, la necesidad de buscar métodos de solución que permitan el aprovechamiento y reindustrialización de los mismos en un determinado mercado.

Pese a que Colombia se caracteriza globalmente por ser un país rico en recursos naturales, a diario se van desgastando con mayor intensidad, se tiene previsto que entre los próximos 100 años el cambio climático afectará al país aumentado la temperatura promedio de 22°C a 24°C, generando zonas secas como en el Caribe y de más agua como en la costa Atlántica, la región Andina y Bogotá (Herrera, 2015).

Los plásticos y específicamente el PET son uno de los materiales más contaminantes, debido a que como lo referencia, la revista Gestión son considerados “Los reyes de la vida moderna” (Sánchez, 2007). Con ánimos de demostrar la veracidad de tal título en el país se desechan más de 1.500 millones de botellas PET al año (Eko - Enka de Colombia), a su vez, existen estudios realizados en el municipio de Soacha que ayudan a comprender mejor esta problemática, como el realizado por estudiantes de la Corporación Universitaria Minuto de Dios “UNIMINUTO” en el 2014, donde realizaron una encuesta a un grupo de recolectores de materiales plásticos, con el fin de identificar características de recolección, en ella se consideran índices porcentuales acerca de la cantidad de botellas recolectadas en el sector de Soacha por día, obteniendo como resultado que el 50% de los recicladores recolectan un promedio de 10 a 20 kilogramos (kg) de PET al día, el 30% de ellos de 0 a 10 kg, el 15% hacen su recolección diaria de 21 a 30 kg de PET y el 5% restante una cantidad mayor o igual a 30 kg (Ramírez , Leal , & Esguerra, 2014), para el mismo año, la alcaldía del municipio realizo una encuesta a 139 bodegas, 41 centros de acopio y 8 estaciones de clasificación, con

3 Compuesto de fórmula general (C₅R₅)₂M que consiste en dos aniones ciclopentadienilo unidos a un átomo metálico central con estado de oxidación II
el fin de identificar las características de los diferentes materiales que se recolectan (entre ellos, las resinas plásticas PE, PP, PET, PEAD, PEBD) esto para actualizar el PGIRS. Entre los datos que se resaltan se encuentra que el nivel de recuperación para el PET y el PP, son del 21 y 16% del total de resinas plásticas, recuperándose 993,1 toneladas anuales de PET y 759,7 toneladas anuales de PP (Alcaldía de Soacha, 2014); una salida de campo realizada en el 2016 a la Laguna Tierra Blanca ubicada en la comuna 1 de Soacha evidencia la cantidad de residuos plásticos desechados de forma inadecuada en el municipio (ver anexos A y B), concluyendo que la contaminación visual y ambiental en el municipio es cada vez más alta y por ende más perjudicial para el entorno (Alcaldía de Soacha - Cundinamarca); creándose la necesidad de avanzar en proyectos para el beneficio industrial de aquellos materiales.

1.1. FORMULACIÓN DEL PROBLEMA

¿Cómo diseñar un sistema productivo para la obtención de Tela Poliéster de tejido de punto y Botones plásticos de textura lisa, aprovechando la hojuela PET y el granulado PP post consumo en el sector textil de Soacha?
2. JUSTIFICACIÓN

Los residuos plásticos son considerados, entre otros, los principales contaminantes de fauna, islas, ríos, océanos y mares, (Téllez Maldonado, 2012) siendo generador del efecto invernadero debido a circunstancias específicas como las energías no renovables empleadas para el procesamiento y transformación de las mismas, acumulando gases tóxicos a cielo abierto (Ladyverd, 2016); y desencadenando daños evidenciados en la fauna de tipo molecular, en ecosistemas con su paisajismo y en afectaciones de salud para el ser humano, bajo la no cultura del reciclaje.

Con respecto al PET se pueden producir variedad en productos terminados como lo son: nuevos envases, fíbras de poliéster (Ministerio de Ambiente, 2004), láminas para termo formados, maderas plásticas, aditivos para pavimentos, ladrillos ecológicos (Gaggino, 2008), bolsos, zapatos, telas (Sacal, 2015), hilos y madera ecológica (Enka de Colombia), entre otros. Por otro lado, el PP reciclado dentro del sector industrial se puede emplear para la elaboración de tapones, elementos decorativos, textiles, películas, hilos, baldes, conos, ganchos para colgar ropa, entre otros. (Ministerio de Ambiente, 2004).

En la fase 1 del macro-proyecto del Semillero de Investigación para el Emprendimiento y Desarrollo Empresarial (SIEDES) de la UDEC, se llevan a cabo las siguientes actividades: recolección, selección, peletizado y triturado de envases plásticos (PET) y tapas (PP) que componen la botella, obteniendo lo que será la materia prima (escama PET –no incluye procesamiento de peletizado-) para la elaboración de tela poliéster de punto y botones.

Cabe resaltar que el envase de plástico está conformado por: botella, tapa y etiqueta, de las cuales se considera la botella a base de PET uno de los artículos más empleados en la actualidad, (Curiosoando, 2014) a diferencia del mercado del PP, limitado a ser de utilidad en campañas de fundaciones (Fundación Sanar, 2016). Con el fin de que no se entierren millones de pesos por no reciclar (Rojas, 2016), se pretende fabricar productos ecológicos como la tela poliéster de punto, haciendo uso del envase de PET y botones plásticos de tapas de PP.

Así mismo, siendo materiales que cuentan con propiedades tales como resistencia térmica, rigidez, claridad, transparencia, costos bajos y ser totalmente reciclable (Propiedades y características del PET), da luz verde a la posibilidad de llevar a cabo un conjunto de actividades y procedimientos claves para la obtención del producto terminado deseado, dirigido hacia la fase 2 del macro proyecto, haciendo referencia a las líneas de producción de tela ecológica de punto y botones plásticos, tomando ambos materiales y transformándolos inicialmente en hilares y material pastoso; todo esto con el fin de beneficiar cinco elementos básicos: al hombre, al medio ambiente, al crecimiento económico, industrial y tecnológico del municipio de Soacha a nivel nacional.
3. OBJETIVOS

3.1. OBJETIVO GENERAL

Diseñar un sistema productivo para la obtención de tela poliéster de tejido de punto y botones plásticos de textura lisa proyectado a enero de 2023.

3.2. OBJETIVOS ESPECÍFICOS

- Caracterizar los materiales a partir de pruebas físico-químicas que permitan identificar las propiedades del PET y del PP en función de productos terminados (tela poliéster y botones).

- Realizar un proceso productivo que describa, las operaciones, las capacidades y los requerimientos necesarios para la obtención de botones plásticos y tela poliéster ecológica como producto terminado.

- Simular procesos productivos que determinen las condiciones de trabajo y operación para la transformación de materias primas en productos terminados.
4. ALCANCE Y LIMITACIONES

Este trabajo de grado conforma la fase 2 del macro proyecto del semillero de investigación para el Emprendimiento y Desarrollo empresarial de Soacha (SIEDES) de la Universidad de Cundinamarca, titulado como “Análisis de la producción, aprovechamiento y manejo de los residuos sólidos en la industria de plásticos, en el municipio de Soacha”, en donde han venido trabajando desde la fase 1 la realización del diagnóstico del mercado, el comportamiento económico y la ejecución de encuestas a empresas del sector, contribuyendo en conjunto al proceso misional de incentivar el emprendimiento en el municipio mediante medidas sociales, permitiendo el mejoramiento de familias y comunidades de la localidad.

En este caso el proyecto está enfocado en diseñar un sistema productivo de dos tipos diferentes de productos, por un lado, se tendrá la tela ecológica tipo poliéster de tejido de punto y por otro los botones plásticos, cada uno compuesto de materiales poliméricos diferentes; para el primero estará dispuesto el PET o polietileno de tereftalato extraído de la botella plástica previamente desechada, y para el segundo se hará uso del material PP o polipropileno obtenido de tapas post-consumo.

Los botones plásticos que se diseñan van dirigidos hacia el sector textil, empleados en diversas prendas según gusto del consumidor. Estos mismos tienen un diseño circular con dos agujeros, de los cuales se manejan tamaños de 12 mm de diámetro, con un grosor de 4 mm.

Con respecto al PET y su re-manejo e industrialización se someterá a procesos de transformación para la obtención de hilo y posteriormente de rollos de tela poliéster con dimensiones de 1 m de largo y 1,20 m de ancho.

Cabe resaltar que para efectos del presente proyecto no se tendrán en cuenta:

- Variedad en tamaños y formas, ya que el mercado considera diversidad y cantidades muy altas de las mismas; lo que indicaría que se tendría que evaluar variables como: la oferta y la demanda tanto de productos terminados como de materias primas (plásticos), el nicho del mercado, los puntos de venta, la macro y micro localización, etc., dando un enfoque erróneo y disperso hacia dónde va dirigido el proyecto en sí.

- Estudios financieros que relacionen ingresos con egresos ni evaluaciones de la inversión frente al retorno de la misma en términos de maquinaria, local, muebles, etc.
El estudio efectuado desde el semillero por la fase I del macro proyecto, ya que, está inmerso como primer objetivo en el trabajo de grado (aún no sustentado) de las mismas.

Debido a que el actual trabajo considera como aprovechamiento el “diseño de los procesos netamente productivos”.

Asimismo, se delimita la validez del proyecto al año 2023, en consecuencia, de que la maquinaria sigue un proceso de obsolescencia programada, asimismo, no se asegura que el consumo siga un comportamiento ascendente a largo plazo, debido a la conciencia ambiental.
5. ANTECEDENTES

En relación a los materiales más utilizados en el mundo se encuentra el plástico, material que, gracias a sus características físicas de resistencia, durabilidad, practicidad y bajo costo lo hacen ser uno de los materiales más deseados y a su vez peligroso para el medio ambiente (Mañon, 2014). Creado en 1860 por el inventor norteamericano Wesley Hyatt que utilizó un procedimiento a presión de la piroxilina, nitrato de celulosa, alcanfor y alcohol, para su obtención, patentado con el nombre de celuloide en 1870, tuvo éxito comercial a pesar de ser inflamable y deteriorarse con la exposición a la luz. (Hachi Quintana & Rodríguez Mejía, 2010). Años más tarde, con el avance en el desarrollo de los plásticos sintéticos y termoplásticos, aparece en 1950 la fibra de poliéster y el propileno, materiales considerados como uno de los plásticos de mayor uso, especialmente para el moldeo por inyección (Groover M., 1997).

Dentro de los avances realizados para la reutilización de los plásticos en la última década que impulsan al cuidado del medio ambiente se encuentran investigaciones relacionadas con la transformación del PET en fibra poliéster, idea evidenciada en el artículo científico Reciclaje de botellas de PET para obtener fibra poliéster, presentado en la Red de Revistas Científicas de América Latina, el Caribe, España y Portugal, del Programa de Ingeniería Industrial de la universidad de Lima, Perú, en el 2009; investigación que describe el procedimiento de la conversión del PET a fibra poliéster y los usos del mismo al finalizar el proceso de transformación.

A nivel nacional se tiene como principal referente para el aprovechamiento de residuos plásticos la empresa Enka de Colombia la cual es una organización comprometida con el medio ambiente y para ello adecua procesos de transformación de materiales poliméricos, haciendo de sus productos terminados ecoeficientes y ayudando a que Colombia deje de contaminarse con más de 1.500 millones de botellas de PET al año, las cuales llegan a ríos, playas y campos, y sólo algunas van a los rellenos sanitarios, reduciéndoles su vida útil dado el gran volumen de estos envases, que tardan más de 100 años en degradarse (Eko-Enka de Colombia).

Según datos extraídos de la página principal Enka de Colombia, por medio del reciclaje de envases plásticos se obtienen los siguientes beneficios sociales y ambientales a nivel energético evidenciados en la tabla 1.
Tabla 1. Beneficios del reciclaje

<table>
<thead>
<tr>
<th>BENEFICIOS SOCIALES</th>
<th>BENEFICIOS AMBIENTALES – ENERGÉTICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Generación de empleos formales e informales a más de 2.800 personas a nivel nacional desde la recolección de botellas hasta la fabricación de la fibra.</td>
<td>• La resina reciclada utiliza un 92% menos de energía que todo el proceso para fabricar el mismo producto con materias primas vírgenes.</td>
</tr>
<tr>
<td>• En los centros de acopio se emplean en su mayoría madres cabeza de familia, desplazados y reinsertados.</td>
<td>• El ahorro en energía para el planeta es equivalente al consumo de una población cercana a 100,000 habitantes.</td>
</tr>
<tr>
<td></td>
<td>• Las emisiones de CO₂, se reducen hasta en un 72% al comparar con la producción de la resina virgen.</td>
</tr>
</tbody>
</table>

Fuente: Datos obtenidos a través de la página principal de Enka de Colombia (Medellín-Antioquia)
6. MARCO TEÓRICO

6.1. HISTORIA BREVE DE LA PRODUCCIÓN

El desarrollo de la sociedad humana data desde los tiempos de la edad primitiva, donde se evidenciaba el subsistir del ser humano a partir de la transformación de los diferentes recursos otorgados por la naturaleza en herramientas y utensilios que facilitaban suplir las diferentes necesidades básicas, es entonces donde el hombre crea diferentes técnicas de trabajo cooperativo que se ven reflejadas en la caza, pesca, domesticación y recolección de alimento; he aquí el inicio de la producción. (Méndez Morales, 2005)

Fue hasta el siglo XIX, que la sociedad occidental se basaba en la agricultura y en el sistema de aprendices, el cual consistía en la supervisión de los mismos durante un largo periodo de entrenamiento. (Noori & Radford, 1998)

La fabricación de un producto se desarrollaba por separado de forma rudimentaria, en donde por lo general el encargado del proceso de fabricación y ensamblaje de un determinado producto era una sola persona. Es así como hasta el siglo XVIII se desarrolló el sistema fabril en Inglaterra, esto gracias al aprovechamiento de las máquinas de vapor (Noori & Radford, 1998). Poco después, en 1775, Adam Smith introdujo al proceso de producción, el concepto de especialización del trabajo, en su libro “La riqueza de las naciones”, el cual se fundamenta en un principio simple:

“Si se asigna a los obreros un pequeño conjunto de tareas que ellos repiten una y otra vez, se incrementa su rendimiento, se reduce la pérdida de tiempo en el cambio de tareas y se estimula el desarrollo de herramientas especializadas. Esta red origina un incremento en la productividad laboral y una disminución de los costos.” (Noori & Radford, 1998, pág. 41)

Con el progreso tecnológico de la mitad del siglo XIX, los productos al igual que las fábricas iban aumentando y con ello surgian teorías que facilitaban la administración de los procesos de producción.
6.2. TEORÍAS DE LA ADMINISTRACIÓN DE PRODUCCIONES

6.2.1. ADMINISTRACIÓN CIENTÍFICA O TAYLORISMO

Para el comienzo del siglo XX, Frederick W. Taylor considerado como el fundador de la Ingeniería Industrial (Noori & Radford, 1998) y padre de la Administración Científica (Galindo & García Martínez, 2006), realizó miles de pruebas con el fin de identificar las variables importantes de la producción, las cuales le ayudaron a diseñar métodos de trabajo donde reflejaban la importancia del hombre en el proceso productivo, debido a que para él, la persona y la máquina eran una sola entidad (Riggs, 2003). Entre estos métodos se encuentra la División del Trabajo concepto publicado por Smith en 1776 en su libro *The Wealth of Nations* (La riqueza de las naciones), el cual consiste en la repartición del trabajo por persona según la experiencia y/o especialización, lo cual logró en su entonces evidenciar un incremento del mercado y mejoramiento de la productividad (Sipper & Bulfin Jr., 1998).

Los análisis de micro-movimientos para la mejora en procesos, estudios de tiempos y análisis de métodos realizados por los esposos Frank y Lilian Gilbreth, dieron inicio a lo que actualmente se conoce como “estudio de tiempos y movimientos”, teniendo como finalidad la reducción de los mismos al efectuar una tarea en específico. Es decir, se emplea en búsqueda de una mejora constante en procesos laborales al lograr el ahorro de esfuerzo innecesario y establecer estándares de trabajo razonables y sostenibles para los trabajadores, así mismo los Gilbreth reconocieron la necesidad de tener en cuenta elementos psicológicos y fisiológicos en el diseño de los cargos (Noori & Radford, 1998).

6.2.2. PRODUCCIÓN EN SERIE O FORDISMO

La combinación del aprendizaje a través de los conceptos del trabajo especializado propuesto por Taylor, lograron que Henry Ford en 1913 diseñara la primera línea de montaje móvil, para fabricar el llamado “Modelo-T”. Las líneas de montaje contaban con trabajadores que a pesar de no ser calificados o ser semicalificados, desarrollaban tareas específicas en cadena, logrando producir más vehículos en menos tiempo y a un costo menor (Noori & Radford, 1998). Ford se encargaba de que el producto, los procesos, los materiales, la logística y el personal estuviesen bien integrados y equilibrados en el diseño y la operación de la planta (Niebel & Freivalds, 2009).
6.2.3. SISTEMA DE PRODUCCIÓN TOYOTA (SPT- TOYOTISMO-)

La Toyota Motor Corporation llevo a cabo el sistema de producción “Toyotismo” con la intención de disminuir variables ociosas, mejorar la productividad y reducir el gasto en términos monetarios a través de la combinación resultante de la administración científica de Taylor con respecto a la línea de ensamblado en masa de Ford, considerando costos de manufactura, ventas, administración, de capital y a su vez siete tipos de desperdicio claves para el entendimiento del sistema: Sobreproducción, sobreprocesamiento, inventario, movimientos innecesarios y productos defectuosos (Niebel & Freivalds, 2009). Lean Manufacturing es una filosofía de producción que “quiere decir hacer más con menos -menos tiempo, menos espacio, menos esfuerzos humanos, menos maquinaria, menos materiales-, siempre y cuando se le esté dando al cliente lo que desea.” (Villaseñor Contreras & Galindo Cota, 2009).

6.3. SISTEMAS DE PRODUCCIÓN

Los sistemas de producción hacen parte de la clasificación de todos los sistemas en general, por lo que, si se ve desde el punto productivo, estos se pueden organizar en las siguientes categorías: 1. En procesos (Flow Shop), los cuales, como su nombre lo indica siguen un proceso en común para la elaboración de todos los productos, y 2. En órdenes (Job Shop), por cada lote de productos diferentes sigue un proceso especial. (Velázquez Mastretta, 2014)

6.3.1. TIPOS DE SISTEMAS DE PRODUCCIÓN

6.3.1.1. SISTEMA MODELO DE PRODUCCIÓN CONTINUA

Es aquel sistema que recibe de forma continua los materiales o materias primas, para ser almacenados, transportados y procesados mientras se mueven con el fin de que todas estas operaciones se organicen para lograr una situación ideal, no afectada por interrupciones; algunas de las características de este sistema es que cuenta con ayuda de obreros especializados y semiespecializados para su ejecución, los costos de producción son relativamente bajos, producción a gran escala de artículos estándar. (Velázquez Mastretta, 2014)
6.3.1.2. SISTEMAS SEGÚN EL FLUJO DE PRODUCCIÓN

I. SISTEMAS DE EMPUJE (PUSH)

Este tipo de sistema se ve reflejado en organizaciones de producción que inician su operación con la compra de materiales y fabricación de un producto definido; se lleva a cabo antes de recibir pedidos de clientes, basados en previsiones y trabajando contra stocks (Urquiola García, Agüero Zardón, Garza Ríos, & Tamayo García, 2016). Este se basa en la premisa de que es mejor anticipar las necesidades antes de que estas se produzcan. Algunas de sus características son: desviaciones en la programación generan acumulaciones innecesarias en productos en curso, lo que implica mayor costo financiero y riesgo a la obsolescencia, se emplea la reprogramación y el mantenimiento de inventarios de seguridad cuando se generan problemas por trabajar con tamaños de lotes y tiempos de suministros constantes. (Domínguez Machuca, García González, Ruiz Jiménez, Domínguez Machuca, & Alvarez Gil, 1995)

II. SISTEMAS DE ARRASTRE (PULL)

Este tipo de sistema se ve reflejado en organizaciones de producción en la que los clientes son los que generan la compra o fabricación, algunas de sus características son: menores stocks, esto implica menor costo financiero en términos de mantenimiento y menos riesgos de obsolescencia, necesidad de contar con la respuesta rápida de proveedores y de producción, la gestión de los materiales se complica un poco pero se adapta a los cambios en la demanda (Urquiola García, Agüero Zardón, Garza Ríos, & Tamayo García, 2016), proveer a los clientes con lo que necesitan cuando ellos lo requieren y en la cantidad que lo necesitan, minimizar inventarios y el trabajo en proceso, donde se guardan pequeñas cantidades de cada producto y reabasteciendo frecuentemente basándose en lo que consume el cliente (Villaseñor Contreras & Galindo Cota, 2009).

6.3.2. PLAN MAESTRO DE PRODUCCIÓN (MPS)

El plan maestro de producción o programación maestra de producción es el encargado de detallar semanalmente o diariamente, la cantidad de productos específicos que se van a elaborar (Noori & Radford, 1998). Es decir, que evalúa las necesidades de mano de obra, materia prima y equipo para cada trabajo que facilite la producción. (Monks, 1998)
El MPS es un plan de producción que se realiza de manera futura de los artículos finales durante un horizonte de planeación a corto plazo, el cual puede comprender de unas semanas a varios meses. (Gaither & Frazier)

6.3.3. SÍNTESIS DE SISTEMAS

6.3.3.1. PLANEACIÓN DE REQUERIMIENTOS DE MATERIALES (MRP)

Es una técnica de control y planeación de producción de componentes de fabricación que, mediante un conjunto de procedimientos lógicamente relacionados, se emplea el Programa Maestro de Producción para crear órdenes de producción y de compra para losartículos con demanda dependiente (Noori & Radford, 1998).

Las características del sistema se pueden resumir en: 1. Se encuentra orientado a los productos, ya que a partir de las necesidades de estos se planifican los componentes necesarios, 2. Es prospectivo, pues la planificación se basa en las necesidades futuras de los productos, 3. Realiza un ajuste de tiempo de las necesidades de cada ítem en función de los tiempos de suministro, estableciendo las fechas de emisión y entrega de pedidos, 4. Las restricciones de capacidad no son tenidas en cuenta, por lo que no asegura que el plan de pedidos sea viable, y 5. Es una base de datos integrada que debe ser empleada por las diferentes áreas de la empresa. (Domínguez Machuca, García González, Ruiz Jiménez, Domínguez Machuca, & Alvarez Gil, 1995)

El esquema básico del MRP, consta de unas entradas, unos procesos de transformación y unas salidas, en el primero hacen parte el programa maestro de producción, los ficheros de listas de materiales y el fichero del registro de inventarios, en el segundo el desarrollo del sistema MRP y el tercero los informes primarios, los informes secundarios y los datos de transacciones de inventario. (Domínguez Machuca, García González, Ruiz Jiménez, Domínguez Machuca, & Alvarez Gil, 1995)

6.3.3.2. PROGRAMA MAESTRO DE PRODUCCIÓN

Es la parte fundamental del MRP, y cabe resaltar que no es un pronóstico de la demanda, sino un plan de producción, se elabora a partir de la planeación de la capacidad (función administrativa que asigna capital a las funciones de producción de acuerdo con los objetivos a largo plazo de la empresa), la cual es realizada por los departamentos de mercadotecnia y de ventas al pronosticar la demanda del producto, esta planeación de la capacidad se encargar de asignar recursos a la
producción y a las operaciones revelando el estado de las maquinas, instalaciones, operadores e inventarios (Riggs, 2003). El horizonte de planificación se subdivide en periodos o cubos de tiempo semanales, aunque es posible que todo se descomponga en periodos idénticos, ya que puede ocurrir que las proporciones más alejadas en el tiempo se expresen en meses o trimestres. (Domínguez Machuca, García González, Ruiz Jiménez, Domínguez Machuca, & Alvarez Gil, 1995)

6.4. CASA DE LA CALIDAD

La casa de la calidad o también conocida matriz de planeación de producto, indica la relación entre los requerimientos del cliente y los requerimientos amplios de diseño, se examina de cerca y con cuidado las expectativas de los clientes, las cuales se convierten en los QUÉ (ubicados al lado izquierdo de la matriz), transformándose en los CÓMO (parte superior), es decir, en los requerimientos de diseño, para determinar la relación entre cada CÓMO y cada QUÉ (representado mediante uno de los símbolos en el cuerpo de la matriz, de no presentar relación se deja en blanco) y luego se establecen valores objetivos preliminares para cada CÓMO. (Noori & Radford, 1998)

6.5. PRONÓSTICOS

Un pronóstico se refiere a una predicción sobre el futuro, con el objetivo de tomar decisiones con respecto a operaciones en curso o a estrategias a largo plazo (Mathur & Solow, 1996). Entre las características de los pronósticos se encuentran: 1. Normalmente están equivocados, debido a las modificaciones que se presente los requerimientos de recursos y los calendarios de producción si la demanda de pronóstico prueba no ser la correcta, 2. Un buen pronóstico es más que un simple número, esto se debe a que el pronóstico incluye cierta medida de error, 3. Los pronósticos agregados son más exactos, 4. Entre más lejano sea el horizonte del pronóstico, menos exacta será la predicción, y 5. Los pronósticos no deben usarse para excluir información conocida (Nahmias, 2007).
6.5.1. CÁLCULO DE SERIES DE TIEMPO

6.5.1.1. MÍNIMOS CUADRADOS

Este método se usa cuando los puntos de los datos marcados parezcan seguir una línea recta con el objetivo de determinar la recta que mejor se ajuste, es decir, que la línea deseada minimiza las diferencias entre la línea y cada uno de los puntos, también la suma de las distancias verticales debe ser igual a cero. (Riggs, 2003)

Una recta se define por la ecuación 1

\[Y = a + bX \]

Donde,

\(Y = \text{Valor del pronostico a un periodo dado} \)

\(X = \text{Medida por incrementos a partir de un punto base} \)

\(a = \text{Incógnita} \)

\(b = \text{Pendiente de la base} \)

6.5.1.2. PROMEDIO SIMPLE

Cuando \(b \), en la ecuación de la recta (ecuación 1), es igual a cero, la línea es horizontal, siendo para este caso, que el pronóstico para el periodo siguiente viene a ser el promedio de todos los valores de \(Y \) hasta la fecha (ecuación 2). (Riggs, 2003)

\[Y_F = \frac{\sum Y}{N} \]

Donde,

\(Y_F = \text{Valor del pronostico hasta la fecha} \)

\(\sum Y = \text{Sumatoria de todos los valores de } Y \)

\(N = \text{Número de periodos} \)
6.5.1.3. PROMEDIO MÓVIL

Para obtener un pronóstico por esta forma es necesario promediar los puntos de datos a lo largo del número deseado de periodos anteriores. Este número abarca normalmente un año, con el fin de atenuar las variaciones de temporada. (Riggs, 2003)

Un promedio móvil del orden N es sencillamente el promedio aritmético de las observaciones N más recientes. Para el tiempo dado se restringe la atención a los pronósticos de un paso adelante. Entonces F_t, el pronóstico hecho en el periodo $t - 1$ para el periodo t, esta dado por la ecuación 3. (Nahmias, 2007)

$$F_t = \left(\frac{1}{N}\right) \sum_{i=t-N}^{t-1} D_i = \left(\frac{1}{N}\right) (D_{t-1} + D_{t-2} + \cdots + D_{t-N})$$

Donde,

$F_t = \text{Pronóstico del promedio móvil de } N \text{ periodos para el periodo } t$

$N = \text{Número de periodos}$

$D_i = \text{Demanda del periodo } i$

6.5.1.4. SUAVIZACIÓN EXPONENCIAL

Este tipo de pronóstico consiste en que el pronóstico actual es el promedio ponderado del último pronóstico y el valor actual de demanda (ecuación 4) (Nahmias, 2007). La constante de suavización α es un número entre 0 y 1, el cual entra multiplicando a cada pronóstico, pero cuya influencia declina exponencialmente al volverse antiguos (ecuación 5) (Monks, 1998).

$$F_{t+1} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

$$\alpha = \frac{2}{n + 1}$$

Donde,

$F_{t+1} = \text{Nuevo pronóstico}$

$F_{t-1} = \text{Pronóstico anterior}$

$A_{t-1} = \text{Demanda anterior}$

$\alpha = \text{Constante}$

$n = \text{Número de periodos}$
6.6. GESTIÓN Y CONTROL DE INVENTARIOS

6.6.1. LOTE A LOTE

Consiste en ofrecer lo que se demande en el periodo, es decir, hacer los pedidos iguales a las necesidades netas de cada periodo minimizando costos de posesión. (Domínguez Machuca, García González, Ruíz Jiménez, Domínguez Machuca, & Alvarez Gil, 1995). Lo que garantiza que el pedido solicitado sea suficiente para evitar desabastecimientos durante el periodo de espera. (Krajewski, Ritzman, & Malhotra, 2008)

6.6.2. MÉTODO DE PERIODO CONSTANTE

Este método consiste en fijar un intervalo entre los pedidos de manera arbitraria, que permita que la cantidad económica de ordenar y de producir se pueda ajustar en cada periodo, esto con el fin de que los lotes se igualen a las sumas de las necesidades netas en el intervalo elegido por la organización. (Logística y abastecimiento)

6.6.3. CANTIDAD ECONÓMICA DE PEDIDO – MODELO EOQ

Esta técnica puede producir el tamaño del lote de menor costo de inventario de componentes, ya que se mantiene la misma cantidad de pedido cada vez que se solicita. Se basa de cinco suposiciones para ser efectiva: 1) la tasa de demanda del artículo o producto debe ser constante, 2) no cuenta con restricciones para el tamaño de cada lote, 3) cuenta con costos de mantenimiento de inventarios y costos fijos por lote, 4) no existe problema si se combinan varios pedidos que vayan al mismo proveedor, y 5) el tiempo de espera es constante. (Krajewski, Ritzman, & Malhotra, 2008)

Para su cálculo se implementa la ecuación (6).

\[
EOQ = \sqrt{\frac{2 \times D \times S}{H}} \tag{6}
\]

Donde,

\(D = \text{Tasa de demanda}\)

\(S = \text{Costo de pedido}\)

\(H = \text{Costo de mantenimiento}\)
6.6.4. POR ORDEN DE PRODUCCIÓN O CANTIDAD PERIÓDICA DE PEDIDO – MODELO POQ

Este modelo permite ordenar en cada uno de los pedidos cantidades diferentes con la tendencia a solicitarlos en tiempos predeterminados, es por eso, que para evitar desabastecimientos la cantidad de pedido debe ser igual a la cantidad necesaria durante los tiempos predeterminados entre pedidos (Krajewski, Ritzman, & Malhotra, 2008). Para su cálculo es necesario la aplicación de la ecuación (7).

\[
POQ = \frac{N}{EOQ} \tag{7}
\]

Donde,

\[
D = \text{Tasa de demanda}
\]

\[
N = \text{Cantidad de periodos}
\]

\[
EOQ = \text{Cantidad de orden óptimo}
\]

6.7. PLANEACIÓN AGREGADA

Indica la manera como la empresa debe proveer capacidad para satisfacer la demanda a mediano plazo (Noori & Radford, 1998). El objetivo es traducir los pronósticos de la demanda a un esquema de planeación para niveles de personal y de producción durante el horizonte de planeación (Nahmias, 2007).

Existen seis pasos que facilitan la elaboración del proceso de planeación agregada (Noori & Radford, 1998), los cuales son:

I. Seleccionar un horizonte de planeación y dividirlo en periodos (intervalo temporal). Si la empresa cuenta con variedad de bienes o servicios, se deben crear grupos de productos agregados.

II. Elaborar un pronóstico de la demanda estimada para cada grupo de producto agregado a cada periodo del horizonte de planeación. Se deben expresar los pronósticos de demanda en requerimientos de recurso.

III. Cuando la variación de los requerimientos de producción es muy grande de un periodo a otro, se debe recurrir a la fijación de precios, promoción y otras técnicas destinadas a cambiar la duración y el nivel de la demanda.

V. Seleccionar una estrategia de planeación agregada.

VI. Desarrollar el plan agregado utilizando la optimización o técnicas heurísticas.

6.7.1. PLAN DE INVENTARIO CERO

Este tipo de planeación consiste en desarrollar mediante cuadros un plan de inventario cero, también llamado plan de lote por lote, en el que cada mes se produce la cantidad demandada sin dejar existencias en inventario, la cantidad de trabajadores será proporcional a la demanda, es decir, si aumenta la demanda, aumentara el número de trabajadores, pero si decrece existirán despidos. Para el cálculo del número de trabajadores necesarios en el mes se realiza a través de la ecuación 10. (Sipper & Bulfín Jr., 1998)

\[
\text{Trabajadores necesarios} = \frac{\text{Demanda/Mes}}{(\text{Unidades/Trabajador/Día})}
\]

En la figura 1 se evidencia un ejemplo de la realización de un cuadro de inventario cero.
6.7.2. PLAN DE FUERZA DE TRABAJO NIVELADA O CONSTANTE

Este plan consiste en eliminar por completo las necesidades de contratar y despedir durante el horizonte de planeación, para ello es necesario calcular la fuerza mínima de trabajo requerida para cada mes, esto con el fin de no presentar faltantes de inventario en los diferentes periodos. (Nahmias, 2007)

Para obtener el número de trabajadores necesarios para un periodo acumulado se emplea la ecuación 11.

\[
\text{Trabajadores (acumulado)} = \frac{\text{Demanda acumulada}}{(\text{días acumulados})(\text{Unidades}/\text{Trabajador/Día})}
\]
Dentro de este plan de trabajo constante se manejan los costos de almacenar y de ordenar, los cuales se pueden calcular con las ecuaciones 12 y 14.

El costo de almacenar una unidad de producción es de $3,82, el cual se calcula por medio de la ecuación 6, y el costo de ordenar es de $720.099, calculada por la ecuación 8.

\[CH = I \times P \] \hspace{1cm} (10)

\[I = 100 \times \frac{A \times Ca}{C \times P} \] \hspace{1cm} (11)

Donde,

\(CH \) = Costo de almacenar
\(C \) = Cantidad de consumo
\(Ca \) = Costo metro cuadrado, Almacenamiento anual
\(A \) = Área ocupada por las existencias
\(P \) = Precio unitario
\(I \) = Tasa de almacenamiento

\[CS = \frac{H \times Q^2}{2D} \] \hspace{1cm} (12)

Donde,

\(CS \) = Costo de ordenar
\(H \) = Costo de mantener
\(Q \) = Cantidad optima de pedido
\(D \) = Demanda HP

6.8. CÁLCULO DE LA CAPACIDAD DE UN SISTEMA DE PRODUCCIÓN (MAQUINARIA)

Consiste en determinar la capacidad de un sistema de producción a través del análisis realizado a la maquinaria, permitiendo determinar el nivel de utilización de cada una, para esto es necesario hallar el tiempo máximo de cada máquina, (capacidad teórica) para luego a partir de datos históricos pronosticar las interrupciones y así hacer el análisis correspondiente a cada máquina para finalmente calcular sus respectivas eficiencias. A partir del monitoreo y medición de las interrupciones presentadas diariamente se puede plantear continuamente la disminución de las mismas de manera que aumente la capacidad real (tasa de producción lograda) de la máquina y así evitar cuellos de botella. (Leguizamón Castellanos)
Para el cálculo de la capacidad de producción se analiza la maquinaria y la eficiencia de la misma, donde se tomarán en cuenta la cantidad de las máquinas a usar por proceso, sus velocidades, tiempos y las interrupciones nombradas a continuación (Leguizamón Castellanos):

\[
\begin{align*}
A &= \text{Alistamiento y preparación} \\
C &= \text{Cargue y dercargue (evitar sobreesfuerzo en la maquina)} \\
P &= \text{Paradas y arrancadas} \\
M &= \text{Mantenimiento planeado} \\
D &= \text{Daños y averías de maquinaria o partes de la misma} \\
W &= \text{Accidentes de trabajo} \\
S &= \text{Aseo}
\end{align*}
\]

Según (Leguizamón Castellanos) el cálculo de la capacidad de la maquinaria tiene la estructura evidenciada en la tabla 2.

Para la determinación del cálculo de la capacidad de producción es necesario contar con los tiempos realizados a la maquinaria, los cuales son evidenciados en la tabla 3 con su respectiva ecuación, una vez obtenidos los tiempos se procede a realizar el cálculo de la capacidad con las ecuaciones de la tabla 4.

Tabla 2 Estructura análisis de máquina

<table>
<thead>
<tr>
<th>TIEMPO</th>
<th>CAPACIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMM</td>
<td>TEORICA (CT)</td>
</tr>
<tr>
<td>-TnD</td>
<td>Tiempo no disponible</td>
</tr>
<tr>
<td>TTD</td>
<td>DISPONIBLE (CD)</td>
</tr>
<tr>
<td>-TnO</td>
<td>Interrupciones planeadas</td>
</tr>
<tr>
<td>TO</td>
<td>OPERACIÓN (CO)</td>
</tr>
<tr>
<td>-TnP</td>
<td>Interrupciones rutinarias</td>
</tr>
<tr>
<td>TP</td>
<td>PRODUCCION (CP)</td>
</tr>
<tr>
<td>-TnF</td>
<td>Interrupciones inesperadas</td>
</tr>
<tr>
<td>TF</td>
<td>FUNCIONAMIENTO (CF)</td>
</tr>
<tr>
<td>-la</td>
<td>Tiempos de ajuste</td>
</tr>
<tr>
<td>TE</td>
<td>REAL (CR)</td>
</tr>
</tbody>
</table>

Fuente: Recuperado del articulo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos
Tabla 3 Cálculo de tiempos

<table>
<thead>
<tr>
<th>Cálculo de tiempos</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIEMPO MÁXIMO DE MÁQUINA (TMM) O CAPACIDAD TEÓRICA</td>
</tr>
<tr>
<td>Correspondiente a todo el tiempo que dispone una máquina y depende del ciclo de tiempo utilizado.</td>
</tr>
<tr>
<td>[T_{mm} = \sum \text{Tiempos de la máquina durante un ciclo determinado}] (13)</td>
</tr>
<tr>
<td>TIEMPO NO DISPONIBLE (TnD)</td>
</tr>
<tr>
<td>Tiempo que no es posible utilizar para efectos productivos. Está conformado por días de fin de semana, días festivos, turnos no trabajados, tiempo de huelgas, tiempo de paros y vacaciones colectivas.</td>
</tr>
<tr>
<td>[T_{nd} = \sum \text{festivos, turnos no trabajados}] (14)</td>
</tr>
<tr>
<td>TIEMPO DE NO OPERACIÓN (TnO)</td>
</tr>
<tr>
<td>Corresponde a todas las interrupciones previstas o planeadas como órdenes de no producción, mantenimiento planeado, falta conocida de materiales, personal y servicios.</td>
</tr>
<tr>
<td>[T_{no} = \text{Interrupciones planeadas, mantenimiento preventivo}] (15)</td>
</tr>
<tr>
<td>TIEMPO DE NO PRODUCCIÓN (TnP)</td>
</tr>
<tr>
<td>Estas interrupciones rutinarias se presentan en las máquinas con una determinada frecuencia, como, por ejemplo: paradas y arrancadas, cargue y descargue, alistamiento y preparación, cambio de herramientas, comidas y refriegers del personal, aseo.</td>
</tr>
<tr>
<td>[T_{np} = \sum \text{Interrupciones rutinarias (Alistamiento, cargo, paradas, aseo)}] (16)</td>
</tr>
<tr>
<td>TIEMPO DE NO FUNCIONAMIENTO (TnF)</td>
</tr>
<tr>
<td>Son interrupciones inesperadas que se presentan en la máquina en forma fortuita o aleatoria, entre ellos se encuentran, daños o averías sobre la máquina, accidentes de trabajo, falta repentina de servicio, falta repentina del personal, falta repentina de materiales.</td>
</tr>
<tr>
<td>[T_{nf} = \text{Interrupciones rutinarias (Daños y averías de la máquina)}] (17)</td>
</tr>
</tbody>
</table>

(Continua)
(Continua)

<table>
<thead>
<tr>
<th>TIEMPO DE AJUSTE (Ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupciones pequeñas de todo tipo</td>
</tr>
<tr>
<td>[Ta = \text{Interrupciones pequeñas de todo tipo}] (18)</td>
</tr>
</tbody>
</table>

Fuente: Recuperado del artículo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos.

Tabla 4 Calculo de la capacidad de producción

<table>
<thead>
<tr>
<th>CALCULO DE LA CAPACIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACIDAD DISPONIBLE (CD)</td>
</tr>
<tr>
<td>Es la capacidad instalada del tiempo disponible de la máquina por la capacidad de la misma en determinado periodo.</td>
</tr>
<tr>
<td>[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina})] (19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE OPERACIÓN (CO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de operación en un periodo tiempo</td>
</tr>
<tr>
<td>[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina})] (20)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE PRODUCCIÓN (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de producción en un periodo tiempo</td>
</tr>
<tr>
<td>[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina})] (21)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE FUNCIONAMIENTO (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de producción a partir del tiempo de funcionamiento</td>
</tr>
<tr>
<td>[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina})] (22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD REAL (CR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es la producción real conseguida en un período determinado</td>
</tr>
<tr>
<td>[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina})] (23)</td>
</tr>
</tbody>
</table>

Fuente: Recuperado del artículo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos.
6.8.1. EFICIENCIA

La eficiencia muestra que tan bien una compañía emplea los recursos para fabricar un producto durante un periodo determinado, los procesos o actividades pueden igualarse a su producción, siendo así eficiente. (Noori & Radford, 1998)

Se obtienen con la información proyectada de las interrupciones que regularmente se presentan en la máquina. (Leguizamón Castellanos)

Tabla 5 Calculo de la eficiencia

<table>
<thead>
<tr>
<th>EFICIENCIA TOTAL (ET)</th>
<th>Conjunto entre la capacidad real y la capacidad disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ET = \left(\frac{CR}{CD}\right)(100))</td>
<td>(24)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFICIENCIA DE OPERACIÓN (EO)</th>
<th>Conjunto entre la capacidad real y la capacidad de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EO = \left(\frac{CR}{CO}\right)(100))</td>
<td>(25)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFICIENCIA DE PRODUCCIÓN (EP)</th>
<th>Conjunto entre la capacidad real y la capacidad de producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EP = \left(\frac{CR}{CP}\right)(100))</td>
<td>(26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFICIENCIA DE FUNCIONAMIENTO (EF)</th>
<th>Conjunto entre la capacidad real y la capacidad de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EF = \left(\frac{CR}{CF}\right)(100))</td>
<td>(27)</td>
</tr>
</tbody>
</table>

Fuente: Recuperado del artículo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos
6.9. PRODUCTIVIDAD

La relación de la productividad como medida de eficiencia de producción es que indica en un periodo determinado el estado de un recurso en específico, se emplea con frecuencia para comparar el desempeño de diversos departamentos o compañías (Noori & Radford, 1998). Entre los tipos de productividad existentes, se encuentra la productividad de la mano de obra, encargada de relacionar la producción neta con los costos de mano de obra, con el fin de indicar la eficiencia de la fuerza de trabajo, productividad parcial, encargada de combinar los datos de diferentes factores para obtener una medición de la productividad a nivel de la planta, productividad total, relación de ventas netas a todos los insumos. (Riggs, 2003)

En la tabla 6 se evidencian los tipos de productividad a utilizar.

Tabla 6 Calculo de la productividad

<table>
<thead>
<tr>
<th>CALCULO DE LA PRODUCTIVIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTIVIDAD PARCIAL MATERIA PRIMA</td>
</tr>
<tr>
<td>$PPMP = \frac{(Salidas \ (en \ unidades \ de \ 10 \ Kg))(Precio \ de \ venta \ unitario)}{(Costo \ Unitario \ de \ MP)(entradas\ (en \ unidades \ de \ 10 \ Kg))}$</td>
</tr>
<tr>
<td>PRODUCTIVIDAD PARCIAL EN TÉRMINOS DE PRODUCCIÓN</td>
</tr>
<tr>
<td>$IPP = \frac{(Salidas \ (en \ unidades \ de \ 10 \ Kg))(Precio \ de \ venta \ unitario)}{(Costo \ de \ Produccion \ por \ hora)(# \ horas \ MO)}$</td>
</tr>
<tr>
<td>PRODUCTIVIDAD TOTAL</td>
</tr>
<tr>
<td>$IPT = \frac{(Salidas \ (en \ unidades \ de \ 10 \ Kg))(Precio \ de \ venta \ unitario)}{(Costo \ de \ Prod.X \ hora)(# \ horas \ MO) + (Costo \ unitario \ MP)(Entradas)}$</td>
</tr>
</tbody>
</table>

Fuente: Recuperado del artículo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos
6.10. CONTROL DE LA PRODUCCIÓN

Se puede definir el control de la producción como “la toma de decisiones y acciones que son necesarias para corregir el desarrollo de un proceso de modo que se apegué al plan trazado” (Velázquez Mastretta, 2014), es decir que por medio del control ejercido a la producción es posible regular o administrar la materia prima e insumos, que implican la eliminación de vulnerabilidades que se puedan llegar a presentar dentro del proceso productivo contemplado desde el inicio del ciclo con la llegada de los materiales, hasta finalizar con la transformación del producto terminado, siguiendo una fase de planeamiento que busca precisamente la optimización de los recursos en términos de costos y tiempos de procesamiento. Con el fin de que se lleve a cabo un control de la producción con un plan de flujo de materiales sólido y organizado, se debe tener constante supervisión y comunicación por estaciones ajustando los planes a lo establecido en la planeación para dar su cumplimiento, por lo que es oportuno mencionar las tres fases que lo componen, iniciando con la fase de planeamiento referente a la orientación y programación del sistema de control, describiendo donde y cuando realizar las actividades que conforman cada proceso u operación. Seguido a esto está la fase de acción enfocada en cómo se realizan el conjunto de tareas y operaciones dentro de cada proceso contemplado en el sistema productivo hasta la obtención de las entidades o productos salientes. Como tercera y última fase se encuentra la de cumplimiento o activación haciendo énfasis en la manera en que avanza el trabajo alrededor del ciclo productivo (seguimiento, elementos autorregulados, supervisión y cumplimiento). (Velázquez Mastretta, 2014)

6.11. ORIGEN Y EVOLUCIÓN DE LOS PLÁSTICOS

En relación a los materiales más utilizados en el mundo se encuentra el plástico. Material que, gracias a sus características físicas de resistencia, durabilidad, practicidad y bajo costo lo hacen ser uno de los más deseados y a su vez peligroso para el medio ambiente (Mañon , 2014). Creado en 1860 por el inventor norteamericano Wesley Hyatt que utilizó un procedimiento a presión de la piroxilina, nitrato de celulosa, alcanfor y alcohol, conocido como celuloide, tuvo éxito comercial a pesar de ser inflamable y deteriorarse con la exposición a la luz. (Hachi Quintana & Rodríguez Mejía, 2010). Años más tarde, con el avance en el desarrollo de los plásticos sintéticos y termoplásticos, aparece en 1950 la fibra de poliéster y el propileno, materiales considerados como uno de los plásticos de mayor uso, especialmente para el moldeo por inyección. (Groover M. , 1997)
6.11.1. ANTECEDENTES DEL POLIETILENO DE TEREFTALATO (PET)

El polietileno de tereftalato es un poliéster termoplástico, creado en la década de los 40’s con el objetivo de reemplazar el algodón como fibra (García Villalba, Ponce Corral, Martínez López, & León Ordaz, 2014), patentado por J. R. Whinfield y J. T. Dickinson, pero fue hasta 1951 que se empezó a comercializar como fibra de poliéster y en 1976 se empleó para la fabricación de envases para bebidas, debido a su resistencia y transparencia. (Reciclado de envases PET, 2002)

6.11.2. ANTECEDENTES DEL POLIPROPILENO (PP)

El polipropileno es un polímero termoplástico, parcialmente cristalino, que se obtiene de la polimerización del propileno (o propeno), el cual tiene su origen en 1954, por el científico italiano Giulio Natta, que utilizo los catalizadores Ziegler, los cuales son catalizadores heterogéneos estereoespecíficos creados por Karl Ziegler para la polimerización del etileno a baja presión. (Rubin, 2012)

6.11.3. PRUEBAS REALIZADAS A POLÍMEROS

6.11.3.1. PRUEBAS FÍSICAS

I. IDENTIFICACIÓN DE POLÍMEROS

Los polímeros termoplásticos pueden ser reutilizados mediante diferentes procesos de reciclaje, para los cuales, el paso más importante lo constituye la clasificación e identificación de los polímeros, a través de pruebas de laboratorio que logren determinar los componentes de un material desconocido (Escuela Colombiana de Ingeniería Julio Garavito, 2008), entre ellas se encuentra la prueba de Beilstein y la exposición a temperaturas, pruebas que a través del aroma y el cambio físico permiten identificar el tipo de plástico.

II. PRUEBA DE BEILSTEIN

La prueba de Beilstein es un método simple para determinar la presencia de un halógeno (cloro, flúor, bromo y yodo). Para esta prueba hay que calentar un alambre de cobre limpio en una llama de Bunsen hasta que se ponga incandescente. Después se pone en contacto rápidamente el alambre caliente con la muestra dispuesta y se retorna el alambre a la llama. Una llama verde demuestra la presencia de halógeno. (Escuela Colombiana de Ingeniería "Julio Garavito", 2008)
Los plásticos que contienen cloro son policlorotrifluoretileno, PVC, policloruro de vinilideno y otros, que dan positivo en el ensayo de halógeno. Si la prueba es negativa, es posible que el polímero esté compuesto solamente de carbono, hidrógeno, oxígeno o silicio. (Escuela Colombiana de Ingeniería "Julio Garavito", 2008)

Los materiales que contienen halógenos no son aptos para una transformación que implique corte o grabado con láser, debido a que este procedimiento puede generar gases o polvos nocivos para el operario o la máquina. (TROTEC)

III. PRUEBA EXPOSICIÓN A TEMPERATURAS

Las propiedades mecánicas de los termoplásticos dependen de la temperatura. Una de las características de los polímeros termoplásticos es que pueden calentarse desde el estado sólido hasta el estado líquido viscoso, y al enfriarse vuelven a su estado inicial, sin degradar el polímero aun si se repite varias veces este proceso (Groover M., 1997).

6.11.3.2. PRUEBAS TEXTILES FÍSICAS

I. RESISTENCIA A LA ABRASIÓN

La resistencia a la abrasión es una prueba que se realiza a través de la máquina Martindale con el fin de determinar la durabilidad de la tela, esta máquina dispone de unos platos sobre los cuales se colocan varias muestras de la misma tela, sobre la tela actúan discos con distintos grados de abrasión, que realizan movimientos oscilo rotatorios, las muestras son analizadas continuamente para determinar cuándo se genera el desgaste o la rotura de la fibra y así saber el número de ciclos resistentes. (Modacasa, 2017)

II. RESISTENCIA A LA TENSIÓN Y ELONGACIÓN

Para este tipo de pruebas se puede utilizar un método interno, el cual se crea en laboratorios de pruebas textil para usos propios, los cuales garantiza la utilización de estos por medio de un ente que normalice las pruebas del país donde se está desarrollando el método (Cuellar Romero, 2011). Otra forma de obtener el resultado de esta prueba es con el Ensayo de Grab, sustentado en la norma ASTM D5034, el cual es un ensayo de tracción realizado a telas tejidas y no tejidas, donde se prueba la parte central del ancho de la muestra en las mordazas, utilizando muestras largas de al menos 100 mm x 150 mm con una línea dibujada de forma paralela a la
dirección longitudinal y situada desde el borde de un lado de la muestra, aplicando fuerzas destructivas, que den como resultado la resistencia a la rotura, es decir, la carga máxima o fuerza necesaria para romper el textil y la elongación (INSTRON), es decir, la magnitud en que el hilo se estira antes de romperse o alcanzar su punto de ruptura (COATS)

6.11.3.3. PRUEBA TEXTIL QUÍMICA

I. CAMBIOS DE COLOR EN AGUA

A través de la visualización se utiliza una escala de grises para evidenciar el cambio de color en los textiles, en el cual se observan los grados de resistencia de color de la escala de pasos, el total de la diferencia de color correspondiente y las tolerancias usadas. La resistencia al color 5 está representada en la escala por dos fichas de referencia que se encuentran ubicadas continuamente, color gris neutral y teniendo un valor Y de 12+0,2. Los grados de resistencia de color 4,5 a 1, están representados por fichas de grises neutrales más claros de dimensiones y brillo similares. (AATCC, 2012)
7. MARCO REFERENCIAL

7.1. ARTÍCULOS CIENTÍFICOS CONSULTADOS

Dentro de los avances realizados para la reutilización de los plásticos en la última década que impulsan al cuidado del medio ambiente se encuentran investigaciones relacionadas con la transformación del PET en fibra poliéster, idea evidenciada en el artículo científico *Reciclaje de botellas de PET para obtener fibra poliéster*, publicado en la revista Ingeniería Industrial y disponible en Red de Revistas Científicas de América Latina, el Caribe, España y Portugal, del Programa de Ingeniería Industrial de la universidad de Lima, Perú, en el 2009 por Pérez Laura y Ruiz Marco; investigación que describe el procedimiento de la conversión del PET a fibra poliéster y los usos del mismo al finalizar el proceso de transformación. (Perez Mansilla & Ruiz Ruiz , 2009)

Asimismo, el artículo científico tipo investigación titulado *Diseño de un Nuevo Proceso para la obtención de fibras de poliéster a partir de PET reciclado*, realizado por el Ing. Armando García Chávez y el Dr. Juan Carlos Tapia Picazo del Instituto Tecnológico de Aguascalientes, México en 2007, publicado en Conciencia Tecnológica y disponible también en la Red de Revistas Científicas de América Latina, el Caribe, España y Portugal; tiene como objetivo desarrollar un nuevo sistema de obtención de fibra poliéster proveniente del reciclado PET que cuente con características textiles de alto valor agregado a partir del reciclaje de PET. (García Chávez & Tapia Picazo, 2007)

Por otra parte, entre los artículos científicos consultados se encuentra *Conciencia ambiental de los habitantes de la colonia Emilio Portes Gil en la H. Matamoros, Tamaulipas* realizado por Catalina Vargas, Cynthia Briones, María del Perpetuo Socorro Mancha, Patricia Múzquiz y Antonio Vargas de la Universidad de Caldas, Manizales, Colombia y publicado en el año 2013 en la Revista Luna Azul y disponible en la Red de Revistas Científicas de América Latina, el Caribe, España y Portugal; su objetivo es evaluar a través de cinco categorías la conciencia ambiental de los habitantes de la colonia. (Vargas Ramos , Briones Ramírez , Mancha Chavéz, Múzquiz Novoa , & Vargas Gaxiola , 2013)

Simultáneamente, se realizó la consulta del artículo *Diseño y prototipo de una máquina trituradora de PET* realizado por García Luz, Ponce Carlos, Martínez Edith y León Javier, de la Universidad Autónoma de Ciudad Juárez, México, publicado en el año 2014 en la Revista Electrónica CULCYT Cultura Ciencia y Tecnología. (García Villalba, Ponce Corral, Martínez López, & León Ordaz, 2014)
7.2. **TESIS Y PROYECTOS DE GRADOS CONSULTADOS**

Con respecto a las tesis y proyectos de grados consultados se encuentran:

El trabajo de grado titulado “Desarrollo, ejecución y puesta en marcha del plan de negocios para la empresa “Fibras Verdes SAS” de producción por maquila y comercialización de bolsos y capas impermeables para mujer confeccionadas con tela elaborada a partir de polietileno tereftalato (PET) reciclado”, realizado por María Camila Garavito y Luisa Fernanda León estudiantes de la Pontificia Universidad Javeriana, Bogotá D.C - Colombia. El trabajo consiste en la constitución y puesta en marcha de una empresa que utiliza como materia prima el PET post consumo para realizar telas para la confección de bolsos y capas impermeables para mujer. (Garavito & León, 2011)

Proyecto de grado titulado “Estudio de factibilidad para la recolección, acopio, moldeo y comercialización de PET (Polietileno Teleftarato) en el municipio de Soacha “REPETMOL””, realizado en Soacha - Colombia, en el año 2014 por Neny Rodríguez Ramírez, Luis Avellaneda Leal y Diego Zerda Esguerra, estudiantes de la Corporación Universitaria Minuto de Dios “UNIMINUTO”. El proyecto tiene como objetivo realizar un estudio de factibilidad que permita la puesta en marcha de una microempresa que transforme botellas plásticas post consumo en hojuelas. (Ramírez, Leal, & Esguerra, 2014)

Trabajo final de carrera titulado “Reciclado de plástico (PET) para la obtención de fibra textil”, realizado en Santa Cruz - Argentina, en el año 2016 por Cinthia López, estudiante de la Universidad Tecnológica Nacional UTN. El trabajo tiene como finalidad producir fibra poliéster a partir del PET, generando un beneficio económico y minimizando la contaminación ambiental proveniente de este material. (López, 2016)

Trabajo de grado titulado “Plan de negocios para una empresa recicladora de plástico PET, en la ciudad de Bogotá D.C.”, realizado en Bogotá D.C – Colombia en el año 2007 por Yosep Manuel Pachón Bejarano, estudiante de la Pontificia Universidad Javeriana. El trabajo tiene como objetivo desarrollar un plan de negocios que tenga como fin un objeto social a través de la trasformación de residuos sólidos plásticos en la ciudad de Bogotá D.C. (Pachón Bejarano, 2007)

Tesis titulada “Estudio de factibilidad para reciclar envases plásticos de polietileno tereftalato (PET), en la ciudad de Guayaquil”, realizado en Guayaquil – Ecuador, en el año 2010, por José Hachi y Juan Rodríguez estudiantes de la Universidad Politécnica Salesiana. La tesis tiene como objetivo demostrar la factibilidad del PET para construir una planta recicladora y procesadora de envases PET. (Hachi Quintana & Rodriguez Mejía, 2010)
Trabajo de grado titulado “Estudio de factibilidad para el diseño de una planta procesadora de plástico reciclado”, realizado en Guatemala en el año 2015, por Luis Fernando Núñez Díaz, estudiante de la Universidad de San Carlos de Guatemala. El objetivo principal de este trabajo de grado es realizar el estudio de factibilidad para la diseñar una planta que procese el plástico reciclado. (Nuñez Díaz, 2015)

Trabajo de grado titulado “Diseño de una planta productora de artículos a partir de plástico reciclado, basado en la estrategia de la cadena de suministros”, realizada en San Salvador – El Salvador, en el año 2014, por Idis Arango, Rigoberto Díaz y German Ramírez, estudiantes de la Universidad de El Salvador. Su objetivo principal es desarrollar una propuesta para el uso de plástico reciclado en la ciudad a través del diseño de una planta recicladora. (Arango Henríquez, Díaz Martínez, & Ramírez Flores, 2014)
8. MARCO GEOGRÁFICO

La localización de la planta transformadora de residuos plásticos se contempla para la ejecución del macroproyecto ideado en el semillero, por lo que esta información aplicará para los proyectos que integren el mismo. Según el Artículo 154 del Plan de Ordenamiento Territorial POT en donde adopta como zonas especiales los Parques de Actividad Económica y el Artículo 155 PARQUES DE ACTIVIDAD ECONÓMICA Se reglamentan los Parques de Actividad Económica de acuerdo a lo expresado en el Documento Técnico de ajuste.

Esta política se acoge a la propuesta en la “Política Nacional de Producción más Limpia” que está encaminada a “prevenir y minimizar eficientemente los impactos y los riesgos a los seres humanos y al medio ambiente, garantizando la protección ambiental el crecimiento económico, el bienestar social y la competitividad empresarial, a partir de introducir la dimensión ambiental en los sectores productivos, como un desafío de largo plazo”.

El concepto de PARQUE, involucra una visión integral, en donde su proceso de intervención, está fundamentado en la construcción de la infraestructura vial y de servicios públicos, obras ambientales para mitigar los impactos a los recursos agua, suelo y aire, y el desarrollo de proyectos arquitectónicos con unidad de criterio

PARÁGRAFO 1: Localización: Los Parques de Actividad Económica estarán localizados en el área municipal de acuerdo al Mapa de Zonificación de usos del suelo.

Según el plano de zonificación del suelo, la planta se ubicará en el sector de la vereda canoas sobre la autopista longitudinal de occidente (ver figura 2).

Figura 2 Localización de la planta, vereda canoas

Fuente: Mapa de zonificación de usos del suelo, zonas especiales, parques de actividad económica, POT Alcaldía Soacha.
9. MARCO LEGAL

- Ley General Ambiental de Colombia (Ley 99 de 1993). Por la cual se crea el Ministerio del Medio Ambiente, se reordena el Sector Público encargado de la gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental, SINA y se dictan otras disposiciones.

- Guía Ambiental, por la cual la Dirección de Desarrollo Sectorial Sostenible explica las medidas, impacto, monitoreo y consideraciones a tener en cuenta en las directrices para el aprovechamiento y valorización de residuos plásticos, siguiendo con la “Política Nacional de Producción más Limpia" (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2004)

- NTC ISO 14001:2015, por la cual se establecen las medidas de seguimiento como sistema de gestión al cuidado del medio ambiente, estableciendo cuatro etapas secuenciales para cumplir los parámetros de desempeño esperados y el mejoramiento continuo: Planear, Hacer, Verificar y Actuar, proporcionando un marco de alternativas a llevar a cabo con ánimos de proteger los recursos del ambiente considerando los cambios del mismo.

- DECRETO 1505 DE 2003. Por el cual se modifica parcialmente el Decreto 1713 de 2002 adicionándose el artículo 1° de dicho decreto quedando de la siguiente forma:

- "Aprovechamiento en el marco de la gestión Integral de residuos Sólidos. - Es el proceso; mediante el cual, a través de un manejo integral de los residuos sólidos, los materiales recuperados se reincorporan al ciclo económico y productivo en forma eficiente, por medio de la reutilización, el reciclaje, la incineración con fines de generación de energía, el compostaje o cualquier otra modalidad que conlleve beneficios sanitarios, ambientales, sociales y/o económicos".

- Acuerdo No. 46 de diciembre 27 de 2000, por medio de la cual se adopta el Plan de Ordenamiento Territorial del Municipio de Soacha, y sobre la cual se tiene en cuenta el Art. 154 y Art. 155 del capítulo VI correspondiente a las Zonas especiales para el sector industrial en Soacha y sus alrededores para establecer la macro y micro localización dentro del marco geográfico como se muestra en el mismo, respectivamente.
10. MARCO CONCEPTUAL

POLÍMERO: Es un compuesto que consiste en moléculas de cadenas largas unidas entre sí.

TEREFTALATO DE POLIETILENO (PET): Poliéster termoplástico de alta calidad, transparente y utilizado comúnmente en envases moldeados por soplado para bebidas.

POLIPROPILENO (PP): Termoplástico muy versátil que tiene un buen equilibrio de resistencia térmica y química.

FIBRA POLIÉSTER: fibra artificial formada por cualquier polímero de cadena larga compuesto al menos por un 85% en peso de un éster de alcohol dihídrico y ácido tereftálico.

PRODUCCIÓN: Proceso de fabricar, elaborar u obtener un producto mediante el trabajo realizado.

PRODUCTIVIDAD: Es la razón de productos a insumos.

OPERACIÓN: Establecimiento de actividades de valor agregado que transforman insumos en productos.

CAPACIDAD: Es el potencial de un trabajador, máquina, proceso u organización para fabricar productos por unidad de tiempo.

CAPACIDAD TEÓRICA: Tiempo máximo de máquina (TMM), corresponde a la sumatoria de tiempos de la máquina durante un ciclo determinado.

CAPACIDAD DISPONIBLE: Capacidad teórica (TMM) – tiempo no disponible (TnD).

CAPACIDAD DE OPERACIÓN: Capacidad Disponible (CD) – interrupciones planeadas (TnO).

CAPACIDAD DE PRODUCCIÓN: Capacidad de Operación (CO) - interrupciones rutinarias (TnP).

CAPACIDAD DE FUNCIONAMIENTO: Capacidad de producción (CP) – interrupciones inesperadas (TnF).

CAPACIDAD REAL: Capacidad de Funcionamiento (CF) – tiempo de ajuste (ta).
11. DESARROLLO METODOLÓGICO

La metodología del presente proyecto se llevó a cabo en 3 fases correspondientes a cada objetivo como se evidencia en el diagrama 3, siendo la primera fase de tipo exploratoria y experimental, la segunda teórico-práctica y la tercera demostrativa.

11.1. FASE I

Recolección de información a través de fuentes primarias correspondiente a la realización de pruebas de laboratorio (físicas y química) que permiten determinar algunas de las propiedades y características de los materiales a estudiar en cuanto a su composición, resistencia y color, empleando métodos cuantitativos y cualitativos para el análisis de resultados de las mismas, con el fin de determinar si el material cumple con las características para ser materia prima y continuar con la fase 2.

11.1.1. PRUEBAS FÍSICAS A POLÍMERO

I. IDENTIFICACIÓN DE POLÍMEROS: OBTENCIÓN DE LA ESCAMA PLÁSTICA

Diagrama 1 Obtención de escama plástica

Fuente: Autoras
II. PRUEBA DE BEILSTEIN

MATERIALES

- Mechero de Bunsen.
- Vaso precipitado de 50 ml
- Pinzas sujetadoras.
- Alambre de cobre calibre 12
- Ácido Nítrico
- Agua
- Tapa de bebida triturada (escama de polipropileno)
- Botella Plástica
- Tapón de detergente
- Botón de 28 mm

PROCEDIMIENTO

1. Someter 20 cm de alambre de cobre calibre 12 al fuego durante 45 segundos hasta que se torne de color rojo incandescente como se evidencia en la Figura 4.

2. Lavar intermitentemente con agua y 10 ml de ácido nítrico (teniendo suma precaución por la efectividad del fluido) con el fin de eliminar cualquier residuo de material que provoca una coloración indeseada.

3. Estando el alambre limpio tocar un fragmento de la muestra u objeto (figura 5) y acercarlo nuevamente a la llama del mechero Bunsen, una llama de color verde representa que la prueba es positiva con respecto a la presencia de halógenos, la figura 6 evidencia que la prueba es negativa.

III. EXPOSICIÓN A TEMPERATURAS

MATERIALES

- Tapa de bebida triturada y sin triturar (escama de polipropileno)
- Botón de 28 mm
- Vaselina
- Vasija de aluminio
- Tubo de aluminio
- Molde para helados en aluminio
- Cronómetro.

- Tubo de ensayo
- Espátula
- Mechero de Bunsen
- Trípode
- Rejilla de asbesto
- Reloj de vidrio
- Balanza eléctrica
- Plancha de calentamiento
PROCEDIMIENTO

I. En la balanza eléctrica pesar y registrar (tabla 10)

II. En la vasija de aluminio colocar 27 gramos de las tapas trituradas y ubicarla encima de la planta de calentamiento. Esperar y registra el tiempo y la temperatura necesaria para llegar al punto de fusión. Repetir el paso con cada material.

III. Una vez derretidas las escamas de la tapa de bebida, pasar al tubo de aluminio para formar una barra de polipropileno, dejar enfriar y sacar la misma. Cabe aclarar que se trabaja con la barra de polipropileno debido a la ausencia de la maquinaria adecuada (inyectora) y moldes con variedad de dimensiones en la fase experimental que permitiese obtener botón por botón.

11.1.2. PRUEBAS TEXTILES FÍSICAS

I. RESISTENCIA A LA ABRASIÓN

MATERIALES

- 6 muestras de tela ecológica PET verde limón con un diámetro por unidad de 15 cm.
- Máquina Martindale

PROCEDIMIENTO

1. Colocar cada muestra sobre los discos.

2. Encender la máquina y observar los cambios, conforme se efectúa cada ciclo, hasta presentar cambios en su textura.

3. Determinar la calificación según los cambios evidenciados por muestra en textura en cuanto al desgaste y escala de grises para cambio de color, de acuerdo a ciclos efectuados bajo la norma para textiles ASTM D4966 siguiendo método Martindale.
II. RESISTENCIA A LA TENSIÓN Y ELONGACIÓN

MATERIALES
- Muestra de tela ecológica PET verde limón de dimensiones de 150 x 200 mm
- Máquina de tracción.

PROCEDIMIENTO
- Colocar la muestra en la mordaza.
- Aplicar fuerza destructiva a la muestra.
- Registrar los datos obtenidos en cuanto a la tensión y la elongación de los sentidos longitudinal y transversal.

11.1.3. PRUEBAS QUÍMICAS

I. CAMBIOS DE COLOR EN AGUA

MATERIALES
- 3 muestra tela ecológica PET verde limón con medidas de 8 x 5 cm.
- 3 muestra tela testigo 100% algodón
- 3 vasos precipitados
- Agua destilada

PROCEDIMIENTO
1. Pre-acondicionar durante 4 horas a temperatura de 45 ±5 °C y una humedad relativa de 15 ± 5%
2. Sumergir una muestra de tela pegada junto a una tela testigo de 100% algodón en un vaso precipitado que contiene agua destilada a una temperatura de 27 °C durante 1 hora.
3. Sumergir una muestra de tela pegada junto a una tela testigo de 100% algodón en un vaso precipitado que contiene agua destilada a una temperatura de 27 °C durante 18 horas.
4. Después de transcurrir el tiempo de inmersión de las muestras y llevadas a acondicionamiento, realizar una inspección visual y describir el cambio de color evidenciado según la escala de grises.
11.2. FASE II

Diagrama 2 Diagrama de bloques del proceso de planeamiento y control en fabricación de tela y botones.

Fase 1. Planeamiento; orientación, proyección y programación a nivel estratégico

- Selección de Plan maestro de Producción MPS, como alternativa de diseño de un sistema productivo integrándolo como sistema PUSH.
- Levantamiento de datos históricos basados en encuesta realizados por la alcaldía de soacha, el PGIRS y el índice de consumo per cápita.
- Definición de línea de tiempo a 5 años contando desde el año en curso.
- Definición de Horizonte de planeación en término mensual iniciando en Febrero de 2022 a Enero de 2023.
- Pronósticos y/o proyecciones a enero de 2023 con datos pronosticados mensualmente a 2022 por días laborables, teniendo en cuenta que se trabaja de L-S.
- Realización de la planeación agregada a nivel estratégico, determinando producción mensual, costos de mantener en inventario, costos de comprar, turnos por día laborado y número de operarios por línea.
- Selección Modelo EOQ frente al POQ y Lote a Lote, interpretando conducta de los costos contemplados para el estudio, buscando un punto de equilibrio en costos Vs. tamaño de lote.
- Definición de tamaño de lote de pedido y de cantidad de compras a realizar por año en términos de tiempo fijo.

Fase 2: Acción

- Diagrama de operaciones por línea, identificando procesos para la transformación de materia prima (PET y PP) a producto terminado (Tela y Botones).
- Selección de maquinaria por medio de la casa de calidad evaluando características técnicas buscadas por proceso.
- Cálculo de Capacidades y eficiencias por máquina seleccionada.
- Capacidad de procesamiento en términos de tiempo y Kg admisibles a nivel general del proceso productivo.
- Número de entradas y Número de salidas procesadas completamente y despachadas a bodega.

Fase 3: Seguimiento, supervisión y cumplimiento

- Organización de Información.
- Simulación 2D en software Arena version 14.0.
- Interpretación de datos de la simulación en cuanto a indices de productividad por materia prima, por producción y Total.
- Diseño del sistema productivo para el procesamiento de productos desechados y la transformación a productos terminados útiles en el sector textil.

Fuente: Autoras.
Una vez obtenido los resultados de las pruebas de laboratorio de la fase I se procede con la realización de la fase II, la cual se divide en 3 fases evidenciadas en el diagrama 2.

11.3. FASE III

Una vez finalizada la fase II y diseñado el sistema productivo, considerada la maquinaria y las actividades por línea, resulta oportuno llevar a cabo una simulación, contemplando el estudio en función del tiempo que toma transformar o procesar el material por máquina para cada producto según sea el caso. Para ello se emplea el Software “Arena”, debido a su facilidad de uso, a la generación de reportes por categoría con datos estadísticos y a la toma de decisiones durante la corrida de procesos; cabe resaltar, que se trabaja mediante constantes y distribución normal contempleando desviación estándar ajustado a tiempos en segundos durante cada día, con una confianza del 95% y un error del 5% , bajo la premisa de que los recursos que convierten el material (maquinaria) no trabajan al 100% de su capacidad debido a tiempos ociosos, entre otros, y de que no hay alteraciones que incidan en el número de eventos a realizar por cada pedido que abastece las líneas de producción.
Diagrama 3 Síntesis de la metodología

FUENTE: Autoras.
12. FASE I: PRUEBAS DE LABORATORIO

Diagrama 4 Fase I: Realización de pruebas de laboratorio

FUENTE: Autoras.
12.1. IDENTIFICACIÓN DEL PLÁSTICO

12.1.1. OBTENCIÓN DE LAS ESCAMAS PLÁSTICAS

Según el diagrama 1 evidenciado en la metodología, para la elaboración de las pruebas se realizó la recolección de 300 tapas de plástico, las cuales fueron clasificadas y separadas por color; lavadas, desinfectadas y secadas para dar paso a la trituración de 201 tapas rojas (200 tapas trituradas para prueba exposición a temperatura- 1 tapa triturada para la prueba de Beilstein) (ver anexo F), escogidas mediante una revisión previa con la intención de verificar la calidad en el material, obteniendo como resultado que el 33 % (99 tapas) no cumplen con las especificaciones requeridas para la realización de las pruebas, debido a existencia de otro tipo de plástico transparente en el interior de la tapa que actúa como empaque de seguridad, evitando que la bebida se contamine o derrame, lo anterior evidenciado en la figura 3.

Figura 3 Obtención de las escamas plásticas

Fuente: Autoras
12.1.2. PRUEBA DE BEILSTEIN

RESULTADOS

De acuerdo al procedimiento planteado en la metodología figura 4 y figura 5, se evidencia que una de las muestras utilizadas no cuenta con la presencia de halógenos, al no evidenciar cambio de color verde en la llama del alambre de cobre (figura 6).

Figura 4 Prueba de Beilstein. Calentamiento del alambre de cobre

Figura 5 Contacto del cobre con fragmentos de tapas de bebidas

Fuente: Autoras

Figura 6 Resultado de la prueba de Beilstein aplicada en las tapas de bebidas

Fuente: Autoras.
Con el objeto de obtener más características de la tapa de bebidas se realizó esta prueba a otros objetos plásticos para realizar su respectiva comparación, identificando los polímeros de la tabla 7 y las variables de tabla 8.

Tabla 7 Identificación de Polímeros

<table>
<thead>
<tr>
<th>OBJETO</th>
<th>COMPORTAMIENTO DE COMBUSTIÓN</th>
<th>OLOR</th>
<th>COLOR DE LA LLAMA</th>
<th>TIPO DE POLÍMERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapa de bebidas</td>
<td>La sustancia arde suavemente. Se deforma y se funde en la zona de combustión</td>
<td>Ligero olor no de parafina (geranios)</td>
<td>Naranja y Azul</td>
<td>Polipropileno (PP)</td>
</tr>
<tr>
<td>Tapón de detergente</td>
<td>La sustancia arde suavemente. Se deforma y se funde en la zona de combustión</td>
<td>Ligero olor no de parafina (geranios)</td>
<td>Naranja y Azul</td>
<td>Polipropileno (PP)</td>
</tr>
<tr>
<td>Botón Plástico</td>
<td>Se quema rápido por partes hasta fundirse.</td>
<td>Azúcar quemada (dulce)</td>
<td>Azul y Humoso</td>
<td>Poliestireno (PS)</td>
</tr>
<tr>
<td>Botella de bebida</td>
<td>Se quema y se funde rápidamente</td>
<td>Olor a parafina (cera)</td>
<td>Naranja y Azul</td>
<td>Tereftalato de Polietileno (PET)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de información del laboratorio técnico y de análisis de calidad.

Tabla 8 Variables detectadas a partir de la identificación de polímeros.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>COMPORTAMIENTO</th>
</tr>
</thead>
</table>
| X_1 Comportamiento de la combustión | 1 Se deforma y se funde suavemente
 2 Rápido y suave
 3 Se quema y se funde rápidamente |
| X_2 Olor del material sometido a la llama | 1 Geranios
 2 Dulce
 3 Cera |
| X_3 Color de la llama | 1 Naranja y Azul
 2 Azul y humoso
 3 Verde |
| X_4 Tipo de polímero | 1 Polipropileno (PP)
 2 Poliestireno (PS)
 3 Tereftalato de Polietileno (PET) |

Fuente: Elaboración propia a partir de información del laboratorio técnico y de análisis de calidad.
En la tabla 9 se ven registrados los resultados de la prueba de forma numérica para ser expresados en la gráfica 1.

Tabla 9 Resultados de la Prueba de Beilstein

<table>
<thead>
<tr>
<th>OBJETO</th>
<th>COMPORTAMIENTO DE COMBUSTIÓN</th>
<th>OLOR</th>
<th>COLOR DE LA LLAMA</th>
<th>TIPO DE POLÍMERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapa de bebidas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tapón de detergente</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Botón plástico</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Botella plástica</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Autores.

Gráfica 1 Resultados de la Prueba de Beilstein

RESULTADOS DE LA PRUEBA DE BEILSTEIN

Fuente: Autores
Dentro de la gráfica 1 se puede identificar que la tapa de bebida y el tapón de detergente cuentan con los mismos resultados, al ser ambos del mismo polímero termoplástico (polipropileno), es decir, que a al calentarse con altas temperaturas se deforman y se funden suavemente, con un aroma a geranios, y una llama representativa de color naranja azul generada por el contacto con el cobre y el fuego, mientras que, para el caso del botón y la botella plástica, es diferente, el primero es un poliestireno que se consume rápidamente, pero de forma suave, expidiendo un aroma suave y representada por el color azul humoso y el segundo es un polietileno, que se quema y se funde rápidamente con un olor a cera, comparte la misma característica que la tapa de bebida y el botón plástico al genera un color naranja azul. En esta prueba no se arrojó presencia de ningún halógeno, motivo por el cual no se evidenció una llama de color verde.

Otro factor incidente en la identificación del polímero que compone determinado material, es el olor característico de cada objeto sobre el fuego, es decir que si se lleva a la práctica matemática quedaría de la siguiente forma:

\[Y = X; \]

En donde ‘y’ sería la variable dependiente y ‘x’ la independiente

- **Y** = Tipo de polímero
- **X** = Olor de la llama
 - y= 1
 - y=2
 - y=3

Es decir, que cada punto es directamente proporcional en ambas coordenadas (gráfica 2).

Ejemplo:

\[Y=2 \]

– sustituyendo los numerales categorizados en las variables \(X_2 \) y \(X_4 \)

- \(X_2 \) → 2: fragancia a Geranios
- \(X_4 \) → 2: Poliestireno

En la gráfica 2 se puede concluir que cuando la fragancia que se percibe al quemar el objeto es ligera (geranios) su color es azul y expele humo al fundirse significará que está compuesto de Poliestireno.
Gráfica 2 Tipo de polímero según el olor de la llama

RESULTADOS

De acuerdo al procedimiento evidenciado en la metodología, en la tabla 10 se registran los pesos de los diferentes materiales para su respectivo análisis (ver anexo G y H).

Tabla 10 Registro de los pesos de los diferentes materiales

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PESO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapa de bebida sin triturar, con empaque y arillo de seguridad</td>
<td>3,0</td>
</tr>
<tr>
<td>Tapa de bebida sin triturar y sin empaque y arillo de seguridad</td>
<td>2,1</td>
</tr>
<tr>
<td>Tapa de bebida sin triturar, con empaque</td>
<td>2,4</td>
</tr>
<tr>
<td>Tapa triturada sin arillo</td>
<td>2,2</td>
</tr>
<tr>
<td>Botón</td>
<td>2,7</td>
</tr>
<tr>
<td>Botella plástica</td>
<td>8,7</td>
</tr>
<tr>
<td>Vasija de aluminio (olla del tinto)</td>
<td>40</td>
</tr>
<tr>
<td>Tubo de aluminio</td>
<td>13,8</td>
</tr>
<tr>
<td>Molde de aluminio para helados</td>
<td>5,2</td>
</tr>
<tr>
<td>Tubo de ensayo</td>
<td>38</td>
</tr>
<tr>
<td>Vidrio reloj</td>
<td>31,9</td>
</tr>
</tbody>
</table>

Fuente: Autoras.
En este caso cuando se hace referencia a la práctica de sometimiento del material a altas temperaturas en grados centígrados (ver anexo F), el mismo sufre un cambio de propiedades y estado debido al punto de fusión que se busca y al que se expone la escama de polipropileno (ver anexo J), el botón de poliestireno, el tapón de detergente y la botella plástica respectivamente.

Por ende, a partir de lo analizado en el transcurso de la práctica de laboratorio es preciso tener en cuenta las variables que se enlistan en la tabla 11.

Tabla 11 Variables detectadas a partir de la exposición a temperaturas.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>COMPORTAMIENTO</th>
</tr>
</thead>
</table>
| X_1 Tipo de polímero | 1 Polipropileno (PP)
2 Poliestireno (PS)
3 Tereftalato de Polietileno (PET) |
| X_2 Temperatura fusión | |
| X_3 Peso del objeto | |
| X_4 Color | 1 Rojo
2 Azul
3 Café
4 Transparente |
| X_5 Cambios evidenciados | 1 Paulatino
2 Lento
3 Rápido |

Fuente: Elaboración propia a partir de información del laboratorio técnico y de análisis de calidad

A partir de los datos registrados en la tabla 10 y las variables identificadas en la tabla 11 se obtuvieron los datos expresados cualitativa y cuantitativamente de la tabla 12, y una vez ajustada totalmente se obtienen los datos cuantificados de la Práctica de Exposición a temperaturas de la tabla 13.
Tabla 12 Resultados obtenidos práctica exposición a temperaturas.

<table>
<thead>
<tr>
<th>OBJETO</th>
<th>TIPO DE POLÍMERO</th>
<th>T° DE FUSIÓN</th>
<th>PESO (g)</th>
<th>COLOR</th>
<th>CAMBIOS EVIDENCIADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapa estándar</td>
<td>Polipropileno</td>
<td>176</td>
<td>2,1</td>
<td>Rojo</td>
<td>Cambio de estado paulatinamente</td>
</tr>
<tr>
<td>Tapón dosificador detergente</td>
<td>Polipropileno</td>
<td>170</td>
<td>7,9</td>
<td>Azul</td>
<td>Cambio de estado paulatinamente</td>
</tr>
<tr>
<td>Botón 28 mm</td>
<td>Poliestireno</td>
<td>240</td>
<td>2,7</td>
<td>Café</td>
<td>Se reblandece y se cristaliza, cambia de estado lentamente</td>
</tr>
<tr>
<td>Botella plástica 500 ml</td>
<td>Polietileno PET</td>
<td>244</td>
<td>8,7</td>
<td>Transparente</td>
<td>Cambio de estado rápidamente</td>
</tr>
</tbody>
</table>

Fuente: Autoras.

Tabla 13 Datos cuantificados de la práctica de exposición a temperaturas

<table>
<thead>
<tr>
<th>OBJETO</th>
<th>TIPO DE POLÍMERO</th>
<th>TEMPERATURA DE FUSIÓN</th>
<th>PESO (g)</th>
<th>COLOR</th>
<th>CAMBIOS EVIDENCIADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapa estándar</td>
<td>1</td>
<td>176</td>
<td>2,1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tapón dosificador detergente</td>
<td>1</td>
<td>170</td>
<td>7,9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Botón 28 mm</td>
<td>2</td>
<td>240</td>
<td>2,7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Botella plástica 500 ml</td>
<td>3</td>
<td>244</td>
<td>8,7</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Autoras.
La gráfica 3 representa los resultados obtenidos de la exposición a temperaturas, en ella se refleja que la tapa estándar y el tapón dosificador cuentan con temperaturas de fusión parecidas, debido a que son del mismo material (PP), evidenciado en su cambio paulatino de estado, caso contrario para el botón y la botella plástica, que al tener temperaturas de fusión similares pero siendo de diferente material (PS y PET), su cambios de estados son diferentes, siendo para el primero un cambio lento y cristalino, mientras que para el segundo un cambio rápido.
Gráfica 4 Temperatura de fusión según el material

![Gráfica de temperatura de fusión]

Fuente: Autoras.

Matemáticamente la gráfica 4 se expresa en la ecuación 31:

$$Y = 38,364X + 140,36$$ \hspace{1cm} (31)

$$Y = 38,364(3) + 140,36$$

$$Y = 255,45 ^\circ C$$

Para efectos del ejemplo se tomará el numeral 3 de la variable X_1 (Tipo de polímero), correspondiente al polietileno PET.

Aplicándolo a la ecuación 1, arrojará como resultado una limitante en el rango de la temperatura de fusión de acuerdo al material que se ingrese, en este caso el del PET.

Es decir, que para que la botella de PET se funda completamente es necesario que se encuentre dentro del rango de $244 ^\circ C$ – $255 ^\circ C$.
Gráfica 5 Cambios evidenciados según temperaturas de fusión

Por medio de la gráfica 5 se obtiene la ecuación 32, que sirve de base para el cálculo de las variables \(X_2 \) y \(X_5 \), aplicado de la siguiente manera:

\[
Y = 0.022X - 2.8231 \tag{32}
\]

\[
Y = 0.022(240) - 2.8231
\]

\[
Y = 5.28 - 2.8231
\]

\[
Y = 2.4 \approx 2
\]

En donde se tomará como ejemplo la temperatura de fusión de 240°C, correspondiente al Botón de PS.

Lo que sustituyendo en la clasificación de la variable \(X_5 \), en donde se describen los cambios evidenciados, el 2 hace referencia a que el material a esa temperatura se reblandece se cristaliza y cambia de estado lentamente.
Tabla 14 Datos adicionales PP

<table>
<thead>
<tr>
<th>Símbolo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia a la tensión</td>
<td>5,000 lb/pulg 2 (35 MPa)</td>
</tr>
<tr>
<td>Elongación</td>
<td>de 10 a 500% dependiendo de los aditivos</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de Fundamentos de manufactura moderna, 1997, Groover Mikell P.

Tabla 15 Datos adicionales PS

<table>
<thead>
<tr>
<th>Símbolo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia a la tensión</td>
<td>7,000 lb/pulg 2 (50 MPa)</td>
</tr>
<tr>
<td>Elongación</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fuente: Recuperado de Fundamentos de manufactura moderna, 1997, Groover Mikell P.

Las tablas 14 y 15 demuestran la superioridad en lo que a elongación del polipropileno se refiere con respecto al poliestireno, que por efectos de las pruebas se analiza para el botón, ya que el PP se estira en un rango de 10-500% antes de romperse, valor muy por encima del que corresponde al PS con un 1% de estiramiento minimizando la resistencia del material al alargarse.
12.2. PRUEBAS TEXTILES FÍSICAS

A continuación, se describen las pruebas realizadas teniendo en cuenta que se emplean diversas muestras como las de tela poliéster común u ordinaria (figura 7) y de tela ecológica (figura 8), sin embargo, cabe resaltar que materiales como el poliéster y el polipropileno virgen son reconocidos y caracterizados actualmente, por lo que algunos datos se extraen de material documentado.

Figura 7 Tela poliéster común

![Tela poliéster común](image1)

Fuente: Autoras.

Figura 8 Tela ecológica obtenida a partir de botellas plásticas desechadas

![Tela ecológica](image2)

Fuente: Autoras.
12.2.1. RESISTENCIA A LA ABRASIÓN

I. TELA ECOLÓGICA

Tabla 16 Resistencia a la Abrasión (ASTM D4966) efectuada a la tela ecológica

<table>
<thead>
<tr>
<th>PROBETA A</th>
<th>OBSERVACIÓN</th>
<th>CALIFICACIÓN ESCALA DE GRIS PARA CAMBIO DE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.200 CICLOS</td>
<td>A los 2200 ciclos de abrasión la muestra no presenta ningún cambio en el color con una calificación de 5 con escala de grises para cambio de color. No presenta ningún cambio en su apariencia final.</td>
<td>5</td>
</tr>
<tr>
<td>7.000 CICLOS</td>
<td>A los 7000 ciclos de abrasión la muestra no presenta ningún cambio en el color con una calificación de 5 con escala de grises para cambio de color. No presenta ningún cambio en su apariencia final.</td>
<td>5</td>
</tr>
<tr>
<td>15.500 CICLOS</td>
<td>A los 15500 ciclos de abrasión, la muestra presenta un cambio muy leve en el color con una calificación de 4-5 con escala de grises para cambio de color, sin embargo, no presenta desgaste en su apariencia ni rotura de fibras. Presenta una leve vellosidad y pelusa en el área expuesta.</td>
<td>4,5</td>
</tr>
<tr>
<td>25.000 CICLOS</td>
<td>A los 25000 ciclos de abrasión, la muestra presenta un cambio de color con una calificación de 4 con escala de grises para cambio de color, se observa un desgaste leve en el área expuesta no presenta rotura de fibras. Presenta presencia de vellosidad y pelusa.</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente: Autoras, por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.
La resistencia a la abrasión es una prueba que se realiza a través de la máquina Martindale (figura 9) con el fin de determinar la durabilidad de la tela.

La prueba realizada a la tela ecológica evidenciada en la tabla 16, demuestra que esta misma conserva su color y sufre un cambio mínimo en términos de desgaste, lo que permite concluir que es una tela de filamento resistente y óptimo para uso constante, se asegura su durabilidad y buen diseño por lo menos hasta los primeros 15.500 ciclos de fricción, ya que a los 25.000 ciclos se evidencia desgaste y cambio de color (figura 10), todo esto sustentado en método ‘Martindale’ a través de la Norma ASTM D4966.

Figura 9 Textil abrasión Martindale
Máquina de prueba

Fuente: Por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.

Figura 10 Resultado de la prueba de abrasión (Método Martindale).

Fuente: Por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.
II. TELA POLIÉSTER COMÚN

Tabla 17 Ruptura y resistencia de las fibras textiles

<table>
<thead>
<tr>
<th>Fibra</th>
<th>Resistencia a la abrasión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>Excelente</td>
</tr>
<tr>
<td>Olefina</td>
<td></td>
</tr>
<tr>
<td>Poliéster</td>
<td></td>
</tr>
<tr>
<td>Spandex</td>
<td>a</td>
</tr>
<tr>
<td>Lino</td>
<td></td>
</tr>
<tr>
<td>Acrílicos</td>
<td></td>
</tr>
<tr>
<td>Algodón</td>
<td></td>
</tr>
<tr>
<td>Seda</td>
<td></td>
</tr>
<tr>
<td>Lana*</td>
<td>Mala</td>
</tr>
<tr>
<td>Rayón</td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td></td>
</tr>
<tr>
<td>Vidrio</td>
<td></td>
</tr>
<tr>
<td>Vidrio</td>
<td></td>
</tr>
</tbody>
</table>

*Varía según el grosor de la fibra

Fuente: Recuperado del libro Introducción a los textiles de Hollen Norma y Saddler Jane

Para la resistencia a la abrasión de la tela poliéster común se tuvo en cuenta información recopilada de diferentes fuentes, encontrándose que el poliéster standard es muy superior a la de la mayor parte de fibras textiles, siendo sobrepasada por la del nylon (Dr. Carrion Fite) y la olefina (tabla 17); especificaciones técnicas realizadas a una tela de colección Armani hallada en la web, con características de 140 cm de ancho, 320 g/m² de peso y composición 100% poliéster tiene una resistencia hasta 30.000 ciclos de abrasión, sustentado en la norma ISO 12947-2:1998 (FROCA)

Al comparar la tela ecológica con respecto a la de tipo poliéster común se puede evidenciar que sus resultados son similares, permitiendo concluir que es un material con una excelente resistencia a la abrasión o desgaste por fricción en ambos casos.
12.2.2. RESISTENCIA A LA TENSIÓN Y ELONGACIÓN

I. TELA ECOLÓGICA

RESULTADOS

Tabla 18 Resistencia a la tensión efectuada a la tela ecológica

<table>
<thead>
<tr>
<th>SENTIDO</th>
<th>RESISTENCIA A LA TENSIÓN (N)</th>
<th>ELONGACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal (Urdimbre)</td>
<td>448,93</td>
<td>97,33</td>
</tr>
<tr>
<td>Transversal (Trama)</td>
<td>503,7</td>
<td>117,83</td>
</tr>
</tbody>
</table>

Fuente: Por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.

En la tabla 18 se evidencian las variables a estudiar como la resistencia a la tensión en Newton y elongación en porcentajes, en sentidos opuestos, es decir, en sentido Longitudinal (Urdimbre) y Transversal (Trama), en donde se logra evidenciar que el material cuenta con una gran resistencia que sobresale para el caso del alargamiento de la probeta (tela ecológica) (gráfica 6).

Gráfica 6 Resistencia a la tensión y porcentaje de elongación del material mediante método interno para la tela ecológica verde limón.

Fuente: Autoras.
II. TELA POLIÉSTER COMÚN

Para la resistencia a la tensión de la tela poliéster común se tuvo en cuenta información recopilada de diferentes fuentes, encontrándose que el porcentaje de alargamiento del material es del 18% tanto en condiciones normales (65% de humedad relativa, 20 °C) como en húmedo (tabla 19). Dentro de las especificaciones técnicas de la tela Armani mencionada anteriormente en la resistencia a la abrasión, se especifica que su resistencia al rasgado en sentido vertical (urdimbre) es de 100 N y en sentido transversal (trama) es de 72 N, sustentado en las normas ISO 13937-3:2000 (FROCA)

De acuerdo a lo evidenciado en las anteriores tablas de resultados, la tela ecológica obtenida a partir del aprovechamiento de productos post-consumo como el envase de bebidas gaseosas PET tiene ventajas frente a la tela poliéster común, entre estas, la más sobresaliente es la resistencia en su composición a la elongación y alargamiento.

Tabla 19 Ruptura y resistencia de las fibras

<table>
<thead>
<tr>
<th>Fibra</th>
<th>% de alargamiento en el punto de ruptura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal*</td>
</tr>
<tr>
<td>Fibras naturales</td>
<td></td>
</tr>
<tr>
<td>Algodón</td>
<td>3.7</td>
</tr>
<tr>
<td>Lino</td>
<td>2.0</td>
</tr>
<tr>
<td>Seda</td>
<td>20</td>
</tr>
<tr>
<td>Lana</td>
<td>25</td>
</tr>
<tr>
<td>Fibras artificiales</td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td>25</td>
</tr>
<tr>
<td>Acrílico</td>
<td>20</td>
</tr>
<tr>
<td>Aramid</td>
<td>2.3</td>
</tr>
<tr>
<td>Vidrio</td>
<td>3.1</td>
</tr>
<tr>
<td>Móderniñco</td>
<td>14</td>
</tr>
<tr>
<td>Nylon</td>
<td>23</td>
</tr>
<tr>
<td>Nylon HT</td>
<td>16</td>
</tr>
<tr>
<td>Olefina</td>
<td>15-25</td>
</tr>
<tr>
<td>Poliéster</td>
<td>18</td>
</tr>
<tr>
<td>Poliéster HT</td>
<td>9</td>
</tr>
<tr>
<td>Rayón</td>
<td>15</td>
</tr>
<tr>
<td>Rayón HWM</td>
<td>6.5</td>
</tr>
<tr>
<td>Caucho</td>
<td>500</td>
</tr>
<tr>
<td>Spandex</td>
<td>500</td>
</tr>
</tbody>
</table>

Nota: Es deseable un mínimo de 10% para facilitar el procesamiento de textiles.

*Las condiciones normales son: 65% de humedad relativa, 70°F (20°C). Se usa la cifra de porcentaje más baja del intervalo.

Fuente: Recuperado del libro Introducción a los textiles de Hollen Norma y Saddler Jane
12.3. PRUEBAS TEXTILES QUÍMICAS

12.3.1. CAMBIOS DE COLOR EN AGUA

I. TELA ECOLÓGICA

Se sumerge una muestra de tela ecológica pegada junto a una tela testigo 100% de algodón en agua a una temperatura de 27 °C durante una hora y otra muestra de tela pegada junto a una tela testigo algodón 100% en agua a temperatura ambiente durante 18 horas (tabla 20). Después de transcurrido el tiempo de inmersión de las muestras y llevadas acondicionamiento, se realiza una inspección visual y no presentan cambio de color. El material no transfiere color a la tela testigo algodón 100% ni se observa decoloración en el agua, presentando una calificación de transferencia de color de 5 con escala de grises para transferencia de color (figura 11).

Tabla 20 Cambios de color en agua de la tela ecológica

<table>
<thead>
<tr>
<th>TIEMPO (H)</th>
<th>TEMPERATURA</th>
<th>INTENSIDAD DE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27 °C</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>AMBIENTE</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.

Figura 11 Cambios de color en agua de la tela ecológica

Fuente: Por medio de asesoramiento y ayuda de Laboratorios M&G S.A.S.
II. TELA POLIÉSTER COMÚN

Siguiendo la metodología de comparación de la información hallada de la tela de Armani, esta cuenta con una solidez del color al lavado de 5 esto con respecto a la escala de grises sustentada en la norma ISO 105X12:2001 (FROCA), compartiendo la misma característica que la tela ecológica, debido a que las características de resistencia y textura del material la hace duradera con el paso del tiempo.
13. FASE II: PROCESO PRODUCTIVO

A partir de los resultados obtenidos en la fase I en donde se estudian los componentes del producto, se inicia el diseño del sistema productivo contemplando, entradas y salidas, siendo estas últimas el producto terminado resultante de las actividades realizadas dentro del sistema en conjunto; el mismo que para el caso de otras empresas se podrá considerar como producto semielaborado necesario para la creación de prendas de vestir. Es por esto que se consideran alternativas de “sistemas Push” para el diseño y planificación de un sistema productivo, teniéndose en cuenta dos opciones específicamente que trabajen bajo pronósticos y previsión, como lo son el plan maestro de producción (MPS), y el plan de requerimiento de materiales (MRP I y II) el cual integra la planificación de estrategias y desagregación por producto; sin embargo se opta por desarrollar el plan maestro de producción, debido a que la tela y los botones no contienen piezas que se puedan desagregar para ensamblarlas posteriormente en la planta como lo expone la finalidad del uso del programa de requerimiento de materiales o manufactura (Universidad del Centro de la Provincia de Buenos Aires, 2003), así pues resulta adecuado recurrir a la planificación agregada y estratégica que incorpora el plan maestro de producción, optimizando y minimizando recursos en términos de costos de acuerdo a la cantidad en producción requerida.

Cabe resaltar que se descarta la opción de realizar el sistema productivo con un enfoque Pull, ya que para este es necesario ser flexible y trabajar con una demanda actualizada a tiempo real, estudiando el nivel de venta en los puntos determinados para ambos productos. Teniendo en cuenta que se proyecta poner a funcionar la empresa a cinco años no es oportuno tomar la información a 2018 como actualizada, haciendo necesaria la proyección y el forecasting por cada caso.

En lo que a gestión de inventarios se refiere, se emplean tres modelos en el MPS para satisfacer la demanda determinística (variable-conocida) y disminuir costos como lo son el modelo básico EOQ, POQ y LOTE A LOTE con una cantidad de existencias en almacén establecida para cada caso, según sea la cantidad optima de pedido, la cantidad agrupada por horizonte de planeación y la cantidad producida frente a la pedida respectivamente; todo esto teniendo en cuenta el comportamiento de los datos.

Con ánimos de realizar el diseño del sistema productivo para ambas líneas de producción se contempla inicialmente el diseño de los procesos de producción según el flujo de actividades llevados a cabo durante el ciclo productivo, considerando a su vez la estructura de la empresa en términos de maquinaria eficiente y capaz de procesar la cantidad requerida para ambos productos dentro de un horizonte de planeación de 12 meses, empezando desde febrero de 2022 hasta enero de 2023, por medio de la proyección que se realiza con datos históricos desde el año 2014. Por lo que, se tienen en cuenta aspectos como la localización de la planta, las capacidades de cada una de las máquinas, los procesos de producción, la tecnología y el personal encargado por línea.
Diagrama 5 Fase 2: Proceso de producción

Fuente: Autoras.
13.1. PROCESO DE PRODUCCIÓN DE TELA POLIÉSTER PET

Recepción de la hojuela de PET: Producto terminado de la Fase I del macro proyecto del Semillero de Investigación SIEDES (diagrama 6)

Extrusión: Incorpora varias actividades dentro de su operación, tales como:

- Secado
- Fundido
- Filtrado/tamizado
- Auto-limiado y desgasificación
- Compactadora

Las hojuelas se derriten aproximadamente entre 240 °C y 300 °C, obteniendo una masa conocida como “pasta hilable”, la cual se filtra antes de ser extraída. Una vez filtrada la solución, se obtendrán los filamentos por extrusión, los cuales se enfriarán y endurecerán al hacer contacto con el aire.

Estiramiento: Se lleva a cabo por medio de rodillos de goma calientes, produciendo un cambio molecular, y dando a su vez la sensación de apariencia y textura semejante a la de la lana.

Tejido: Se encarga de transformar el hilo en tela poliéster por medio de su estructura circular y sus múltiples agujas.

Lavado, Secado y teñido: La tela es llevada a una máquina en donde se tiñe a presión y posteriormente, se lava y se seca.

Cortado y embalado: Para terminar, se corta por medio de una máquina automática, posteriormente, se le da el ancho, la forma y la medida deseados, para luego, ser rebobinado y almacenado por rollos de tela.
Diagrama 6 Diagrama de operaciones para la producción de tela poliéster PET

TELA POLIÉSTER (PET)

1. Recepción de PET y transporte de material
 - **1. Almacenamiento M.P.**
 - **2. Cortadora y Compactadora**
 - **1. Fundido (control de temperatura) -Extrusión-**
 - **2. Filtrado y tamizado**
 - **3. Estiramiento de hilatura**
 - **4. Tejido de punto**

(Continua)
(Continua)

13.1.1. SELECCIÓN DE LA MAQUINARIA

Para seleccionar la maquinaria que se ajuste a los requerimientos de la empresa se tuvo en cuenta los resultados de la prueba de laboratorio realizadas en la Fase I, debido a que estas nos brinda las características del material a procesas y por ende nos da un parámetro para la selección de la maquinaria, para ello se utilizó la herramienta de la casa de la calidad, en la cual se contemplaron dos alternativas por proceso (ver anexo Y casa de la calidad), evidenciándose los puntos a considerar como prioridad y las actividades de uso constante, las cuales son: mantenimiento de equipos de acuerdo a la situación, mano de obra calificada por proceso y por último establecer el dato con el mínimo error de la capacidad y las unidades aptas a producir en un intervalo de tiempo establecido (diagrama 7). Todo esto obtenido a partir de un estudio previo por medio de ponderaciones establecidas

Fuente: Autoras.
dentro de un cuadro de calificaciones, empleando a su vez simbología y otorgándole a la misma una calificación específica (se aplica a los dos productos, tela y botones).

a) **Mantenimiento de los equipos:** Se proyecta llevar a cabo un mantenimiento preventivo para las máquinas seleccionadas, a las cuales se les otorgará un tiempo ajustado dentro del cálculo de capacidades por concepto de la inspección y verificación de funcionamiento de las mismas.

b) **Mano de obra calificada por proceso (personal operario Integral):** Uno o dos operarios por máquina, que haga sus veces de manejo e inspección del producto resultante por estación.

c) **Capacidad de producción:** Para la estandarización de este inciso junto al d) **unidades por hora;** es necesario integrar los incisos a) y b) contemplando interrupciones planeadas, rutinarias, inesperadas y de ajuste dentro de la operación como tiempo ocioso.

Diagrama 7 Despliegue de la casa de la calidad

Objetivo

<table>
<thead>
<tr>
<th>Ajuste de la ergonomía en el diseño de la máquina según sea el caso</th>
<th>hacer efectivo el uso de elementos de protección personal</th>
<th>Mantenimiento de los equipos</th>
<th>Contar con Personal operativo integral para prestar el servicio por proceso</th>
<th>Capacitación de empleados</th>
<th>Estandarizar la capacidad a producir por máquina y proceso</th>
<th>Compraruestos y herramientas adecuadas según sea el caso</th>
<th>Contar con lisis de Proveedores</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>** Fuente:** Autoras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
En la tabla 21 se enlistan las máquinas por proceso seleccionadas para la producción de tela poliéster a partir de las escamas de PET. (Ver apartado 13.1.5 Calculo de la capacidad de producción -maquinaria-)

Tabla 21 Selección de la maquinaria para la producción de tela poliéster

<table>
<thead>
<tr>
<th>PROCESO</th>
<th>ALTERNATIVA</th>
<th>MAQUINARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección del material y Extrusión</td>
<td>1</td>
<td>Extrusora INTAREMA 1716 TVE PLUS EREMA (sistema de reciclaje de material polimérico) Ecosostenible.</td>
</tr>
<tr>
<td>Estiramiento</td>
<td>2</td>
<td>Manuar Truetzschler-Toyota Superlap TSL 12</td>
</tr>
<tr>
<td>Tejido</td>
<td>1</td>
<td>Tejedora circular ORIZIO JERSEY DE PUNTO</td>
</tr>
<tr>
<td>Teñido (Integración de lavado y secado)</td>
<td>1</td>
<td>LVT400- lavadora, teñidora y secadora automática EFAMEIN</td>
</tr>
<tr>
<td>Corte</td>
<td>1</td>
<td>Máquina automática cortadora y rebobinadora</td>
</tr>
</tbody>
</table>

Fuente: Información basada en casa de la calidad.

13.1.2. PRONÓSTICO ENERO 2023 – SUAVIZACIÓN EXPONENCIAL

Para la realización del pronóstico que responde al mes de enero del año 2023, la fase I del macro proyecto del Semillero de Investigación SIEDES de la UDEC, proporcionó una proyección anual de recuperación por tonelada de las diferentes resinas desde el año 2014 hasta el 2023 con datos recolectados de Acoplásticos y de la encuesta realizada por la alcaldía de Soacha para la actualización del PGIRS, evidenciándose que para el año 2022 se estima recuperar 1.380,5 toneladas de resina PET en el municipio (tabla 22), equivalentes a 10.578.481 metros de producción de tela poliéster anual, con una producción diaria de 35.498 metros, contemplando turnos de 8 horas por día laborable de lunes a sábado, siendo en total 298 días laborados para el 2022. Es así como, basado en la producción diaria y en la cantidad de días laborados por mes del año en mención, se realizó el pronóstico del mes de enero de 2023 a través de la suavización exponencial (figura 12), el cual arrojó una producción requerida de 883.132 metros.
Tabla 22 Proyección anual de recuperación por tipo de resina en el municipio

<table>
<thead>
<tr>
<th>RESINA</th>
<th>PE</th>
<th>PP</th>
<th>PET</th>
<th>PEAD</th>
<th>PEBD</th>
<th>RESIDUOS A RECUPERAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>%COMP.</td>
<td>28%</td>
<td>16%</td>
<td>21%</td>
<td>23%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1.356,2</td>
<td>759,7</td>
<td>993,1</td>
<td>1.115,3</td>
<td>555,9</td>
<td>4.780,1</td>
</tr>
<tr>
<td>2015</td>
<td>1.417,4</td>
<td>794,0</td>
<td>1.038,0</td>
<td>1.165,6</td>
<td>581,0</td>
<td>4.996,0</td>
</tr>
<tr>
<td>2016</td>
<td>1.480,1</td>
<td>1.658,1</td>
<td>2.167,7</td>
<td>2.434,3</td>
<td>1.213,4</td>
<td>5.216,8</td>
</tr>
<tr>
<td>2017</td>
<td>1.544,7</td>
<td>865,2</td>
<td>1.131,1</td>
<td>1.270,3</td>
<td>633,2</td>
<td>5.444,5</td>
</tr>
<tr>
<td>2018</td>
<td>1.610,6</td>
<td>902,2</td>
<td>1.179,5</td>
<td>1.324,5</td>
<td>660,2</td>
<td>5.677,0</td>
</tr>
<tr>
<td>2019</td>
<td>1.677,9</td>
<td>939,9</td>
<td>1.228,7</td>
<td>1.379,9</td>
<td>687,8</td>
<td>5.914,3</td>
</tr>
<tr>
<td>2020</td>
<td>1.746,7</td>
<td>978,4</td>
<td>1.279,1</td>
<td>1.436,4</td>
<td>716,0</td>
<td>6.156,5</td>
</tr>
<tr>
<td>2021</td>
<td>1.814,4</td>
<td>1.016,4</td>
<td>1.328,7</td>
<td>1.492,1</td>
<td>743,7</td>
<td>6.395,4</td>
</tr>
<tr>
<td>2022</td>
<td>1.885,2</td>
<td>1.056,0</td>
<td>1.380,5</td>
<td>1.550,3</td>
<td>772,7</td>
<td>6.644,7</td>
</tr>
<tr>
<td>2023</td>
<td>1.957,2</td>
<td>1.096,3</td>
<td>1.433,3</td>
<td>1.609,6</td>
<td>802,3</td>
<td>6.898,7</td>
</tr>
</tbody>
</table>

Fuente: Información proporcionada por la Fase I Semillero de Investigacion SIEDES, 2018.

Figura 12 Pronóstico enero 2023 mediante suavización exponencial a través de software Excel QM

PRONÓSTICO

<table>
<thead>
<tr>
<th>AÑO 2022</th>
<th>PRODUCCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERO</td>
<td>851,958</td>
</tr>
<tr>
<td>FEBRERO</td>
<td>851,958</td>
</tr>
<tr>
<td>MARZO</td>
<td>922,955</td>
</tr>
<tr>
<td>ABRIL</td>
<td>887,456</td>
</tr>
<tr>
<td>MAYO</td>
<td>851,958</td>
</tr>
<tr>
<td>JUNIO</td>
<td>851,958</td>
</tr>
<tr>
<td>JULIO</td>
<td>922,955</td>
</tr>
<tr>
<td>AGOSTO</td>
<td>922,955</td>
</tr>
<tr>
<td>SEPTIEMBRE</td>
<td>922,955</td>
</tr>
<tr>
<td>OCTUBRE</td>
<td>887,456</td>
</tr>
<tr>
<td>NOVIEMBRE</td>
<td>851,958</td>
</tr>
<tr>
<td>DICIEMBRE</td>
<td>922,955</td>
</tr>
</tbody>
</table>

SUAVIZACION EXPONENCIAL

PRONÓSTICOS Y ANÁLISIS DE ERRORES

<table>
<thead>
<tr>
<th>PRONÓSTICO</th>
<th>ERROR</th>
<th>ABSOLUTO</th>
<th>CUADRADO</th>
<th>Abs Pet Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>851958</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,000%</td>
</tr>
<tr>
<td>851958</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,000%</td>
</tr>
<tr>
<td>851958</td>
<td>70997</td>
<td>70997</td>
<td>5040574009</td>
<td>0,769%</td>
</tr>
<tr>
<td>862880,6154</td>
<td>-10922,615</td>
<td>10922,615</td>
<td>119303527</td>
<td>0,128%</td>
</tr>
<tr>
<td>861200,213</td>
<td>26255,787</td>
<td>26255,787</td>
<td>689366350</td>
<td>0,296%</td>
</tr>
<tr>
<td>865239,5649</td>
<td>-13281,565</td>
<td>13281,565</td>
<td>176399895</td>
<td>0,565%</td>
</tr>
<tr>
<td>863196,2472</td>
<td>-11238,247</td>
<td>11238,247</td>
<td>126298200</td>
<td>0,132%</td>
</tr>
<tr>
<td>861467,2861</td>
<td>61487,714</td>
<td>61487,714</td>
<td>3780378953</td>
<td>0,660%</td>
</tr>
<tr>
<td>870926,9344</td>
<td>52028,066</td>
<td>52028,066</td>
<td>2706919612</td>
<td>0,564%</td>
</tr>
<tr>
<td>878931,2521</td>
<td>8524,7478</td>
<td>8524,7478</td>
<td>72571325,6</td>
<td>0,096%</td>
</tr>
<tr>
<td>880242,7518</td>
<td>-28284,752</td>
<td>28284,752</td>
<td>800027186</td>
<td>0,332%</td>
</tr>
<tr>
<td>875891,2516</td>
<td>47063,748</td>
<td>47063,748</td>
<td>2214996418</td>
<td>0,050991</td>
</tr>
</tbody>
</table>

Promedio

| MODAL | 883,132 |

Fuente: Autoras
Se cuenta con un horizonte de planeación (HP) de 12 meses que va desde febrero-2022 hasta enero-2023, así mismo la totalidad en producción requerida dentro del HP será de 10.609.655 metros (ver el numeral 13.1.4. Planeación agregada con trabajo constante).

13.1.3. PLAN MAESTRO DE PRODUCCIÓN

Teniendo en cuenta las cantidades demandadas, se realiza el plan maestro de producción (MPS) por medio de dimensionamiento de lotes de producción con el fin de determinar cuánto y cuando pedir con costos totales mínimos, siguiendo tres modelos principales: 1. Lote a Lote (Se produce según lo pedido en la demanda), 2. Modelo EOQ (cantidad económica de pedido) en donde se establece la cantidad optima a pedir en unidad de tiempo, y 3. Modelo POQ (periodos constantes) agrupando periodos que componen el horizonte de planeación.

13.1.3.1. DIMENSIONAMIENTOS DE LOTE DE PRODUCCIÓN

13.1.3.1.1. LOTE A LOTE

También conocido como ‘inventario cero’ debido a la inexistencia de unidades en el inventario, puesto que se lleva a cabo a partir de datos históricos y proyecciones de la oferta para determinar el volumen exacto a producir, es decir, se produce lo que el cliente requiere o solicita.

En la tabla 23 se evidencia el desarrollo de este método de dimensionamiento, dando como costo total de producción $27.755.851
Tabla 23 Lote a Lote - Inventario cero para la producción de tela poliéster

<table>
<thead>
<tr>
<th>AÑO</th>
<th>HORizonte de Planeación</th>
<th>REQ.</th>
<th>INV. INICIAL</th>
<th>PRO. REQUERIDA</th>
<th>INV. FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>FEBRERO</td>
<td>851.958</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MARZO</td>
<td>922.955</td>
<td>0</td>
<td>922.955</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABRIL</td>
<td>851.958</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAYO</td>
<td>887.456</td>
<td>0</td>
<td>887.456</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUNIO</td>
<td>851.958</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JULIO</td>
<td>851.958</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AGOSTO</td>
<td>922.955</td>
<td>0</td>
<td>922.955</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SEPTIEMBRE</td>
<td>922.955</td>
<td>0</td>
<td>922.955</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OCTUBRE</td>
<td>887.456</td>
<td>0</td>
<td>887.456</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NOVIEMBRE</td>
<td>851.958</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DICIEMBRE</td>
<td>922.955</td>
<td>0</td>
<td>922.955</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>ENERO</td>
<td>883.132</td>
<td>0</td>
<td>883.132</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>-</td>
<td>-</td>
<td>$ 27.755.851</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>-</td>
<td>-</td>
<td>$ 27.755.851</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autoras

13.1.3.1.2. MODELO EOQ

Se emplea para determinar la cantidad económica de pedido óptimo, buscando que se vea reflejado en la reducción de costos dentro del inventario, para su cálculo se utiliza la ecuación 6 del apartado 6.5.3. empleada en la herramienta de Excel QM, evidenciándose como se muestra en la figura 13, que la cantidad óptima de pedido es de 2.000.000 de metros de tela, con un costo total de $24.540.000 por concepto de mantener existencias en inventario y realizar un nuevo pedido (relación reflejada en la gráfica 8.)
Figura 13 Modelo EOQ para la producción de tela poliéster a través del software Excel QM

PLAN MAESTRO DE PRODUCCIÓN MODELO EOQ

INVENTARIO

ECONOMIC ORDER QUANTITY MODEL

MODELO DE CANTIDAD DE ORDEN ECONÓMICA

DATOS DE CANTIDAD DE PEDIDO

<table>
<thead>
<tr>
<th>D= Tasa de demanda</th>
<th>10.609.655</th>
</tr>
</thead>
<tbody>
<tr>
<td>S= Costo de pedido</td>
<td>$2.312.988</td>
</tr>
<tr>
<td>H= Costo de mantenimiento</td>
<td>$12.27 (Cantidad fija)</td>
</tr>
<tr>
<td>P= Precio unitario</td>
<td>$91.35</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th>Q* (EOQ) = CANTIDAD DE ORDEN ÓPTIMO</th>
<th>2.000.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q*= Inventario máximo</td>
<td>2.000.000</td>
</tr>
<tr>
<td>Q*/2 = Inventario promedio</td>
<td>1.000.000</td>
</tr>
<tr>
<td>D/Q* = Cantidad de pedidos</td>
<td>5</td>
</tr>
<tr>
<td>HQ*/2 = Costo anual de mantenimiento</td>
<td>$12.270.000</td>
</tr>
<tr>
<td>D$/Q* = Costo anual de orden</td>
<td>$12.270.000</td>
</tr>
<tr>
<td>Total CS y CH</td>
<td>$24.540.000,02</td>
</tr>
</tbody>
</table>

Fuente: Autoras
La gráfica 7 hace referencia a los costos que se deben incurrir para el procesamiento y la obtención del producto terminado dentro del ciclo productivo, de acuerdo al tamaño de lote de pedido. Sobre la línea discontinua se tendrá el punto de equilibrio obtenido a través del modelo EOQ, en donde se establece una cantidad optima a pedir de 2.000.000 de metros de tela equivalentes a 261.000 kg PET por pedido en el punto de reorden (72 días) haciendo un total de 5 pedidos por horizonte de planeación. En esta misma se evidencia una conducta variable en términos de costos según el tamaño de la orden, sabiendo que si se adquiere menor cantidad de materia prima se disminuye el costo de mantener en inventario, sin embargo, se aumenta en términos de costos de compra o pedido, ya que se tendrá que pedir más veces en intervalo de tiempo fijo.

Fuente: Autoras
13.1.3.1.3. **MODELO POQ**

Se conoce como la cantidad económica de pedido en tiempo de producción, sobre la cual se agrupa el número de meses de acuerdo a un cálculo previo que incluye la razón entre el horizonte de planeación, la cantidad óptima de pedido y la demanda anual, para su cálculo se utiliza la ecuación 7 del apartado 6.5.4.

En la tabla 24 se evidencia que cada 3 meses se realiza un nuevo pedido, obteniendo un costo total de $31.265.693/ pedido.

Tabla 24 Modelo POQ para la producción de tela poliéster

<table>
<thead>
<tr>
<th>AÑO</th>
<th>HORIZONTE DE PLANEACIÓN</th>
<th>REQ.</th>
<th>INV. INICIAL</th>
<th>PRO. REQUERIDA</th>
<th>INV. FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>FEBRERO</td>
<td>851.958</td>
<td>0</td>
<td>2.626.871</td>
<td>1.774.913</td>
</tr>
<tr>
<td></td>
<td>MARZO</td>
<td>922.955</td>
<td>1.774.913</td>
<td>-</td>
<td>851.958</td>
</tr>
<tr>
<td></td>
<td>ABRIL</td>
<td>851.958</td>
<td>851.958</td>
<td>2.591.372</td>
<td>1.703.916</td>
</tr>
<tr>
<td></td>
<td>MAYO</td>
<td>887.456</td>
<td>0</td>
<td>851.958</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUNIO</td>
<td>851.958</td>
<td>1.703.916</td>
<td>-</td>
<td>851.958</td>
</tr>
<tr>
<td></td>
<td>JULIO</td>
<td>851.958</td>
<td>851.958</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AGOSTO</td>
<td>922.955</td>
<td>2.733.366</td>
<td>1.810.411</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SEPTIEMBRE</td>
<td>922.955</td>
<td>1.810.411</td>
<td>-</td>
<td>887.456</td>
</tr>
<tr>
<td></td>
<td>OCTUBRE</td>
<td>887.456</td>
<td>887.456</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NOVIEMBRE</td>
<td>851.958</td>
<td>2.658.045</td>
<td>1.806.087</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DICIEMBRE</td>
<td>922.955</td>
<td>1.806.087</td>
<td>-</td>
<td>883.132</td>
</tr>
<tr>
<td></td>
<td>ENERO</td>
<td>883.132</td>
<td>883.132</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>CS</td>
<td>-</td>
<td>-</td>
<td>$ 9.251.950</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>-</td>
<td>-</td>
<td>$ 22.213.743</td>
<td>31.465.693</td>
</tr>
</tbody>
</table>

Fuente: Autores

Teniendo en cuenta la información anteriormente presentada se sugiere trabajar con el modelo EOQ, puesto que por medio de la cantidad optima de pedido \(Q^* \) que considera un lote de 2.000.000 metros de tela equivalentes a 261.000 Kg de PET por pedido, se minimizan costos frente al modelo POQ y dimensionamiento lote a lote, pidiendo un total de 5 veces en los 12 meses del horizonte de planeación, generando menos costos por concepto de pedido y de mantener en inventario, teniendo claro que es más costoso pedir que mantener existencias en el almacén.
13.1.4. **PLANEACIÓN AGREGADA CON TRABAJO CONSTANTE**

Como se mencionó anteriormente, se trabajará con un horizonte de planeación de 12 meses a partir de febrero de 2022 hasta enero de 2023, con 7 trabajadores que laborarán 6 días a la semana (lunes a sábado) en turnos de 8 horas, para un total de 299 días disponibles de trabajo. El costo de almacenar una unidad de producción es de $3,82, el cual se calcula por medio de la ecuación 12, y el costo de ordenar es de $720.099, calculada por la ecuación 14 del apartado 6.6.2.

En tabla 25 se evidencia el desarrollo de la planeación agregada, la cual, da como resultado que la producción requerida acumulada para enero de 2023 es de 10.609.655 m, con una producción diaria de 883.132 m

Tabla 25 Planeación agregada con trabajo constante para la producción de tela poliéster

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Días de trabajo</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Horas trabajo</td>
<td>152</td>
<td>208</td>
<td>192</td>
<td>200</td>
<td>192</td>
<td>192</td>
<td>208</td>
<td>208</td>
<td>200</td>
<td>192</td>
<td>208</td>
<td>200</td>
</tr>
<tr>
<td>Total horas Disp. Por trabajador</td>
<td>1344</td>
<td>1456</td>
<td>1344</td>
<td>1400</td>
<td>1344</td>
<td>1344</td>
<td>1456</td>
<td>1456</td>
<td>1400</td>
<td>1344</td>
<td>1456</td>
<td>1400</td>
</tr>
<tr>
<td>Unidades producidas (métros/día)</td>
<td>932.193</td>
<td>1.009.876</td>
<td>932.193</td>
<td>971.034</td>
<td>932.193</td>
<td>932.193</td>
<td>1.009.876</td>
<td>1.009.876</td>
<td>971.034</td>
<td>932.193</td>
<td>1.009.876</td>
<td>883.132</td>
</tr>
<tr>
<td>Unidades Faltantes</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>80.235</td>
<td>86.521</td>
<td>80.235</td>
<td>83.570</td>
<td>80.235</td>
<td>80.235</td>
<td>86.521</td>
<td>86.521</td>
<td>83.570</td>
<td>80.235</td>
<td>86.521</td>
<td>0</td>
</tr>
<tr>
<td>Costo almacenar</td>
<td>$306.497</td>
<td>$332.039</td>
<td>$306.497</td>
<td>$319.268</td>
<td>$306.497</td>
<td>$306.497</td>
<td>$332.039</td>
<td>$332.039</td>
<td>$319.268</td>
<td>$306.497</td>
<td>$332.039</td>
<td>$ -</td>
</tr>
<tr>
<td>Costo de faltantes</td>
<td>$ -</td>
</tr>
</tbody>
</table>

Fuente: Autoras
13.1.5. CÁLCULO DE LA CAPACIDAD DE PRODUCCIÓN (MAQUINARIA)

Para este caso se tomará el cálculo de la capacidad evidenciada en el apartado 6.8., donde se analizó la maquinaria y la eficiencia de la misma, tomando en cuenta la cantidad de las máquinas a usar por proceso, sus velocidades, tiempos y las interrupciones nombradas en el apartado mencionado anteriormente y evidenciadas en los anexos R al V.

Tabla 26 Consulado de relación de variables de análisis con maquinaria del proceso de tela poliéster.

<table>
<thead>
<tr>
<th>ANÁLISIS</th>
<th>UND.</th>
<th>EXTRUSORA</th>
<th>MANJAR</th>
<th>TEJEDORA</th>
<th>TENIDORA Y LAVADORA</th>
<th>CORTADORA Y REBOBINADORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO - Mano de Obra</td>
<td>Cant.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP - Capacidad de Producción</td>
<td>kg/hora</td>
<td>1.800</td>
<td>1.176</td>
<td>1.800</td>
<td>960</td>
<td>1.409,4</td>
</tr>
<tr>
<td>TMM - Tiempo Máximo de Maquinaria o Capacidad Técnica</td>
<td></td>
<td>720</td>
<td>720</td>
<td>720</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>TnD - Tiempo no Disponible</td>
<td>horas/mes</td>
<td>544</td>
<td>544</td>
<td>544</td>
<td>544</td>
<td>544</td>
</tr>
<tr>
<td>TnO - Tiempo de no Operación</td>
<td></td>
<td>16,65</td>
<td>12,5</td>
<td>18,75</td>
<td>6,25</td>
<td>8,25</td>
</tr>
<tr>
<td>TnP - Tiempo de no Producción</td>
<td></td>
<td>49</td>
<td>43</td>
<td>43,5</td>
<td>36</td>
<td>26</td>
</tr>
<tr>
<td>TnF - Tiempo de no Funcionamiento</td>
<td></td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1,5</td>
<td>4</td>
</tr>
<tr>
<td>Ta - Tiempo de Ajuste</td>
<td></td>
<td>0,35</td>
<td>0,5</td>
<td>0,75</td>
<td>0,25</td>
<td>0,75</td>
</tr>
<tr>
<td>CD - Capacidad Disponible</td>
<td></td>
<td>316,800</td>
<td>206,976</td>
<td>316,800</td>
<td>168,960</td>
<td>248,064,4</td>
</tr>
<tr>
<td>CO - Capacidad de Operación</td>
<td></td>
<td>286,830</td>
<td>192,276</td>
<td>283,050</td>
<td>162,960</td>
<td>236,426,85</td>
</tr>
<tr>
<td>CP - Capacidad de Producción</td>
<td></td>
<td>198,630</td>
<td>141,708</td>
<td>204,750</td>
<td>128,400</td>
<td>196,963,65</td>
</tr>
<tr>
<td>CF - Capacidad de Funcionamiento</td>
<td></td>
<td>195,030</td>
<td>132,300</td>
<td>201,150</td>
<td>128,960</td>
<td>191,326,05</td>
</tr>
<tr>
<td>CR - Capacidad Real (kg/mes)</td>
<td></td>
<td>194,400</td>
<td>131,712</td>
<td>199,800</td>
<td>125,720</td>
<td>190,269</td>
</tr>
<tr>
<td>ET - Eficiencia Total</td>
<td>%</td>
<td>61,36</td>
<td>63,63</td>
<td>63,07</td>
<td>75</td>
<td>76,70</td>
</tr>
<tr>
<td>EO - Eficiencia de Operación</td>
<td></td>
<td>67,78</td>
<td>68,5</td>
<td>70,59</td>
<td>77,8</td>
<td>80,48</td>
</tr>
<tr>
<td>EP - Eficiencia de Producción</td>
<td></td>
<td>97,87</td>
<td>92,95</td>
<td>97,58</td>
<td>98,7</td>
<td>96,50</td>
</tr>
<tr>
<td>EF - Eficiencia de Funcionamiento</td>
<td></td>
<td>99,68</td>
<td>99,55</td>
<td>99,33</td>
<td>99,81</td>
<td>99,45</td>
</tr>
</tbody>
</table>

Fuente: Autoras.

En la tabla 26 se enlistan las variables que se tuvieron en cuenta para el proceso productivo de la tela poliéster de punto, frente a los resultados obtenidos por máquina. Para lo que se contemplan 7 trabajadores como fuerza de trabajo, de los cuales se distribuyen de a 1 por cada máquina y 2 para la recepción de materia prima e inspección del sistema. Igualmente, se considera la capacidad de cada máquina según sus características y rendimiento, para luego calcular tiempo real de trabajo por jornada, restando tiempos ociosos a la misma, con el fin de obtener capacidades reales por maquina en términos de Kg/mes y eficiencias de funcionamiento por unidad de tiempo.
Fuente: Calculo realizado según el articulo cálculo de la capacidad de un sistema de producción. Leguizamón Castellanos

La información ilustrada en la tabla anterior, muestra detalladamente los datos resultantes de los cálculos de capacidades en función del tiempo, teniendo en cuenta tiempos de ociosidad, y disponibilidad para la realización del trabajo ejecutado en el turno dado.

13.1.5.1. CAPACIDAD DEL CICLO PRODUCTIVO GENERAL PARA LA OBTENCIÓN DE LA TELA POLIÉSTER

En la tabla 28 se evidencian las capacidades reales de cada máquina, fundamentadas en los cálculos realizados (ver anexos R-V), frente a las que se pueden producir mensualmente dentro del ciclo productivo general, evitando elaborar unidades adicionales para que no se generen cuellos de botella dentro de los diversos procesos inmersos en el mismo. En conclusión, la capacidad real adecuada para trabajar mensualmente es de 126.720 kg/mes, generada por la maquina teñidora, lavadora y secadora, la cual permite obtener 971.034 metros de tela al mes. (ecuación 38)

Así mismo, se sugiere trabajar por medio del modelo EOQ, ya que haciendo uso de este se minimizan costos totales en la producción.
Tabla 28 Capacidad real del ciclo productivo general para la obtención de tela poliéster

<table>
<thead>
<tr>
<th>MAQUINARÍA</th>
<th>DESCRIPCIÓN DEL PROCESO</th>
<th>CAPACIDAD REAL (kg/mes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusora</td>
<td>Transporte e inspección del material, secado, fundido, filtrado/ Tamizado, auto-limpiado y desgasificación, compactadora</td>
<td>194.400</td>
</tr>
<tr>
<td>Manuar Rodillos de Goma calientes</td>
<td>Estiramiento de hilos; proporcionando dureza y mejor apariencia.</td>
<td>131.712</td>
</tr>
<tr>
<td>Tejedora circular ORIZIO</td>
<td>Lleva a cabo el proceso de tejido de punto.</td>
<td>199.800</td>
</tr>
<tr>
<td>Teñidora, lavadora y secadora</td>
<td>- Lavado</td>
<td>126.720</td>
</tr>
<tr>
<td></td>
<td>- Teñido</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Secado</td>
<td></td>
</tr>
<tr>
<td>Cortadora y rebobinadora</td>
<td>- Cortado</td>
<td>190.269</td>
</tr>
</tbody>
</table>

Capacidad real admisible para Producir a nivel general 126.720

Fuente: Autoras

\[
Produccion Mensual = \frac{\text{Capacidad real admisible}}{\text{Peso 1 metro de tela}}
\]

\[
Produccion Mensual = \frac{126.720 \text{ kg/mes}}{0.1305 \text{ kg/m}} = 971.035 \text{ m/mes}
\]
13.2. PROCESO DE PRODUCCIÓN DEL BOTÓN PLÁSTICO PP

Recepción del granulo de PP: Producto terminado de la Fase 1 del macro proyecto del Semillero de Investigación SIEDES.

Fundición del PP para transformación en botones: se dispone el material previamente clasificado a temperaturas de acuerdo a lo evidenciado en las pruebas correspondientes al estudio técnico. Se busca obtener la forma circular de los botones con las dimensiones deseadas por medio de la utilización de moldes en la inyectora que captarán la recepción del Polipropileno fundido y le darán forma al mismo. (Los moldes deben tener un diámetro de 12 mm).

Almacenamiento final: embalaje, almacenamiento y disposición final de los botones.

Diagrama 8 Diagrama de operaciones para la producción de Botones Plásticos (PP)

Fuente: Las Autoras
13.2.1. **SELECCIÓN DE LA MAQUINARIA**

En la tabla 29, se menciona las maquinarias necesarias para la producción de botones plásticos a partir de los gránulos de PP. (ver apartado 13.2.5 Calculo de la capacidad de producción -maquinaria-)

<table>
<thead>
<tr>
<th>PROCESO</th>
<th>ALTERNATIVA</th>
<th>MAQUINARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte de material</td>
<td>2</td>
<td>Transportadora lineal con cinturón PU/PVC</td>
</tr>
<tr>
<td>Fundidora, moldeo y perforación</td>
<td>2</td>
<td>Máquina de moldeo por inyección de gran tamaño tipo híbrido FVX 1100 III- 600 L</td>
</tr>
</tbody>
</table>

Fuente: Información basa de la casa de la calidad.

13.2.2. **PRONOSTICO ENERO 2023 – SUAVIZACIÓN EXPONENCIAL**

Al igual que para el pronóstico de la tela poliéster se utilizaron los datos otorgados por la fase I del macro proyecto del Semillero de Investigación SIEDES de la UDEC correspondientes a la proyección de recuperación anual de la resina de PP en el municipio, con base a la información recolectada de Acoplásticos y de la encuesta realizada por la alcaldía de Soacha para la actualización del PGIRS, en el cual se evidencia que para el año 2022 se estima la recuperación de 1.056 toneladas (tabla 22), equivalentes a 288.516.239 unidades de producción de botones plásticos anual, con una producción diaria de 968.175 metros turnos de 8 horas laborables de lunes a sábados, siendo en total 298 días laborados para el 2022. Basándonos en la producción diaria y en la cantidad de días laborados por mes del año 2022 se realizó el pronóstico del mes de enero del siguiente año a través de la suavización exponencial (figura 14), el cual arrojo que la producción requerida es de 23.979.790 metros.
Se cuenta con un horizonte de planeación (HP) de 12 meses que va desde febrero-2022 hasta enero-2023, así mismo la totalidad en producción requerida dentro del HP será de 289'259.821 metros (ver el numeral 13.2.4. Planeación agregada con trabajo constante).

13.2.3. PLAN MAESTRO DE PRODUCCIÓN

Teniendo en cuenta las cantidades demandadas, se realiza el plan maestro de producción (MPS) por medio de dimensionamiento de lotes de producción con el fin de determinar cuánto y cuando pedir con costos totales mínimos, siguiendo tres modelos principales: 1. Lote a Lote (Se produce según lo pedido en la demanda), 2. Modelo EOQ (cantidad económica de pedido) en donde se establece la cantidad optima a pedir en unidad de tiempo, y 3. Modelo POQ (periodos constantes) agrupando periodos que componen el horizonte de planeación.
13.2.3.1. DIMENSIONAMIENTOS DE LOTE DE PRODUCCIÓN

13.2.3.1.1. LOTE A LOTE

En la tabla 30 se evidencia el desarrollo de este método de dimensionamiento, dando como costo total de producción $36.786.832

Tabla 30 Lote a Lote - Inventario cero para la producción de botones plásticos

<table>
<thead>
<tr>
<th>AÑO</th>
<th>HORIZONTE DE PLANEACIÓN</th>
<th>REQ.</th>
<th>INV. INICIAL</th>
<th>PRO. REQUERIDA</th>
<th>INV. FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>FEBRERO</td>
<td>23.236.207</td>
<td>0</td>
<td>23.236.207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MARZO</td>
<td>25.172.558</td>
<td>0</td>
<td>25.172.558</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABRIL</td>
<td>23.236.207</td>
<td>0</td>
<td>23.236.207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAYO</td>
<td>24.204.382</td>
<td>0</td>
<td>24.204.382</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JUNIO</td>
<td>23.236.207</td>
<td>0</td>
<td>23.236.207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JULIO</td>
<td>23.236.207</td>
<td>0</td>
<td>23.236.207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AGOSTO</td>
<td>25.172.558</td>
<td>0</td>
<td>25.172.558</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SEPTIEMBRE</td>
<td>25.172.558</td>
<td>0</td>
<td>25.172.558</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OCTUBRE</td>
<td>24.204.382</td>
<td>0</td>
<td>24.204.382</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NOVIEMBRE</td>
<td>23.236.207</td>
<td>0</td>
<td>23.236.207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DICIEMBRE</td>
<td>25.172.558</td>
<td>0</td>
<td>25.172.558</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENERO</td>
<td>23.979.790</td>
<td>0</td>
<td>23.979.790</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>CS</td>
<td>-</td>
<td>-</td>
<td>$36.786.832</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>-</td>
<td>-</td>
<td>$36.786.832</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autores
13.2.3.1.2. MODELO EOQ

Para su cálculo se utilizó la herramienta de Excel QM y en la figura 15 se evidencia que la cantidad óptima de pedido es de 50.000.000 de unidades, equivalentes a 183.500 kg/pedido con un costo total referente a mantenimiento de inventarios y realización de pedidos de $31.113.500, relación reflejada en la gráfica 8.

Figura 15 Modelo EOQ para la producción de botones plásticos a través del software Excel QM

PLAN MAESTRO DE PRODUCCIÓN MODELO EOQ

INVENTARIO

MODELO DE CANTIDAD DE ORDEN ECONÓMICA

<table>
<thead>
<tr>
<th>DATOS DE CANTIDAD DE PEDIDO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D= Tasa de demanda</td>
<td>289.259.821</td>
</tr>
<tr>
<td>S= Costo de pedido</td>
<td>$3.065.569</td>
</tr>
<tr>
<td>H= Costo de mantenimiento</td>
<td>$0,71</td>
</tr>
<tr>
<td>P= Precio unitario</td>
<td>$2,20</td>
</tr>
</tbody>
</table>

RESULTADOS

Q*= [EOQ] = CANTIDAD DE ORDEN ÓPTIMO	50.000.000
Q*= Inventario máximo	50.000.000
Q*/2 = Inventario promedio	25.000.000
D/Q* = Cantidad de pedidos	6
HQ*/2 = Costo anual de mantenimiento	$17.734.920,74
DS/Q* = Costo anual de orden	$17.734.920,74
Total CS y CH	$31.113.500,00

Fuente: Autoras
La gráfica 8 hace referencia a los costos que se deben incurrir para el procesamiento y la obtención del producto terminado dentro del ciclo productivo, de acuerdo al tamaño de lote de pedido. Sobre la línea discontinua se tendrá el punto de equilibrio obtenido a través del modelo EOQ, en donde se establece una cantidad optima a pedir de 50.000.000 de botones plásticos equivalentes a 183.500 kg PP por pedido en el punto de reorden (60 días) haciendo 6 pedidos por horizonte de planeación. En esta misma se evidencia una conducta variable en términos de costos según el tamaño de la orden, sabiendo que si se adquiere menor cantidad de materia prima se disminuye el costo de mantener en inventario, sin embargo, se aumenta en términos de costos de compra o pedido, ya que se tendrá que pedir más veces en intervalo de tiempo fijo.

Fuente: Autoras
13.2.3.1.3. MODELO POQ

La tabla 31 muestra el desarrollo del modelo POQ para la producción de botones plásticos, en él se puede evidenciar que cada 3 meses se hace solicitud de requerimientos obteniendo unos costos anuales de $12.262.277 por pedir y $35.028.001 por almacenar, para un total anual de $47.290.279.

Tabla 31 Modelo POQ para la producción de botones plástico

<table>
<thead>
<tr>
<th>AÑO</th>
<th>HORizonte de Planeación</th>
<th>Req.</th>
<th>Inv. Inicial</th>
<th>Inv. Requerida</th>
<th>Inv. Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>FEBRERO</td>
<td>23.236.207</td>
<td>-</td>
<td>71.644.972</td>
<td>48.408.765</td>
</tr>
<tr>
<td></td>
<td>MARZO</td>
<td>25.172.558</td>
<td>48.408.765</td>
<td>70.676.796</td>
<td>46.472.414</td>
</tr>
<tr>
<td></td>
<td>ABRIL</td>
<td>23.236.207</td>
<td>23.236.207</td>
<td>74.549.498</td>
<td>49.376.940</td>
</tr>
<tr>
<td></td>
<td>MAYO</td>
<td>24.204.382</td>
<td>-</td>
<td>72.388.555</td>
<td>49.152.348</td>
</tr>
<tr>
<td></td>
<td>JUNIO</td>
<td>23.236.207</td>
<td>46.472.414</td>
<td>70.676.796</td>
<td>46.472.414</td>
</tr>
<tr>
<td></td>
<td>JULIO</td>
<td>23.236.207</td>
<td>23.236.207</td>
<td>70.676.796</td>
<td>46.472.414</td>
</tr>
<tr>
<td></td>
<td>AGOSTO</td>
<td>25.172.558</td>
<td>-</td>
<td>74.549.498</td>
<td>49.376.940</td>
</tr>
<tr>
<td></td>
<td>SEPTIEMBRE</td>
<td>25.172.558</td>
<td>49.376.940</td>
<td>72.388.555</td>
<td>49.152.348</td>
</tr>
<tr>
<td></td>
<td>OCTUBRE</td>
<td>24.204.382</td>
<td>24.204.382</td>
<td>70.676.796</td>
<td>46.472.414</td>
</tr>
<tr>
<td></td>
<td>NOVIEMBRE</td>
<td>23.236.207</td>
<td>-</td>
<td>72.388.555</td>
<td>49.152.348</td>
</tr>
<tr>
<td></td>
<td>DICIEMBRE</td>
<td>25.172.558</td>
<td>49.152.348</td>
<td>72.388.555</td>
<td>49.152.348</td>
</tr>
<tr>
<td></td>
<td>ENERO</td>
<td>23.979.790</td>
<td>23.970.790</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2023</td>
<td>CS</td>
<td>-</td>
<td>-</td>
<td>$12.262.277</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$35.028.001</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$47.290.279</td>
</tr>
</tbody>
</table>

Fuente: Autores
13.2.4. **PLANEACIÓN AGREGADA CON TRABAJO CONSTANTE**

En tabla 32 se evidencia el desarrollo de la planeación agregada, la cual, da como resultado que la producción requerida acumulada para enero de 2023 es de 23.979.790 unidades, con una producción diaria de 3.689 unidades.

Tabla 32 Planeación agregada con trabajo constante para la producción de botones plásticos

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dias de trabajo</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Horas trabajo</td>
<td>192</td>
<td>208</td>
<td>192</td>
<td>200</td>
<td>192</td>
<td>192</td>
<td>208</td>
<td>208</td>
<td>200</td>
<td>192</td>
<td>208</td>
<td>200</td>
</tr>
<tr>
<td>Total horas Disp.</td>
<td>832</td>
<td>768</td>
<td>800</td>
<td>768</td>
<td>768</td>
<td>832</td>
<td>800</td>
<td>768</td>
<td>832</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidades Faltantes</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>889.875</td>
<td>964.031</td>
<td>889.875</td>
<td>926.953</td>
<td>889.875</td>
<td>889.875</td>
<td>964.031</td>
<td>964.031</td>
<td>926.953</td>
<td>889.875</td>
<td>964.031</td>
<td>0</td>
</tr>
<tr>
<td>Costo de almacenar</td>
<td>$553.742</td>
<td>$599.887</td>
<td>$553.742</td>
<td>$576.815</td>
<td>$553.742</td>
<td>$599.887</td>
<td>$599.887</td>
<td>$576.815</td>
<td>$553.742</td>
<td>$599.887</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Costo de faltantes</td>
<td>$ -</td>
</tr>
</tbody>
</table>

Fuente: Autoras
13.2.5. CÁLCULO DE LA CAPACIDAD DE PRODUCCIÓN (MAQUINARIA)

Tabla 33 Consolida de relación de variables de análisis con maquinaria del proceso de botones plásticos.

<table>
<thead>
<tr>
<th>ANÁLISIS</th>
<th>UND.</th>
<th>CINTA TRANSPORTADORA</th>
<th>MOLDEO POR INYECCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO - Mano de Obra</td>
<td>Cant.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP - Capacidad de Producción</td>
<td>kg/hora</td>
<td>720</td>
<td>785</td>
</tr>
<tr>
<td>TMM - Tiempo Máximo de Maquinaria o Capacidad Teórica</td>
<td>horas/nes</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>TnD - Tiempo no Disponible</td>
<td></td>
<td>544</td>
<td>544</td>
</tr>
<tr>
<td>TnO - Tiempo de no Operación</td>
<td></td>
<td>6,25</td>
<td>18,75</td>
</tr>
<tr>
<td>TnP - Tiempo de no Producción</td>
<td></td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>TnF - Tiempo de no Funcionamiento</td>
<td></td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>Ta - Tiempo de Ajuste</td>
<td></td>
<td>0,25</td>
<td>0,25</td>
</tr>
<tr>
<td>CD - Capacidad Disponible</td>
<td></td>
<td>126.720</td>
<td>138.160</td>
</tr>
<tr>
<td>CO - Capacidad de Operación</td>
<td></td>
<td>122.220</td>
<td>123.441,25</td>
</tr>
<tr>
<td>CP - Capacidad de Producción</td>
<td></td>
<td>104.220</td>
<td>96.751,25</td>
</tr>
<tr>
<td>CF - Capacidad de Funcionamiento</td>
<td></td>
<td>102.420</td>
<td>95.181,25</td>
</tr>
<tr>
<td>CR - Capacidad Real (kg/mes)</td>
<td></td>
<td>102.240</td>
<td>92.232</td>
</tr>
<tr>
<td>ET - Eficiencia Total</td>
<td></td>
<td>80.68</td>
<td>68.75</td>
</tr>
<tr>
<td>EO - Eficiencia de Operación</td>
<td></td>
<td>83.65</td>
<td>76.95</td>
</tr>
<tr>
<td>EP - Eficiencia de Producción</td>
<td></td>
<td>98.1</td>
<td>98.17</td>
</tr>
<tr>
<td>EF - Eficiencia de Funcionamiento</td>
<td></td>
<td>99.82</td>
<td>99.8</td>
</tr>
</tbody>
</table>

Fuente: Autoras.

En la tabla 33 se enlistan las variables que se tuvieron en cuenta para el proceso productivo de los botones plásticos, frente a los resultados obtenidos por máquina. Para lo que se contemplan 4 trabajadores como fuerza de trabajo, de los cuales se distribuyen de a 1 por cada máquina y 2 para la recepción de materia prima e inspección del sistema. Igualmente, se considera la capacidad de cada máquina según sus características y rendimiento, para luego calcular tiempo real de trabajo por jornada, restando tiempos ociosos a la misma, con el fin de obtener capacidades reales por maquina en términos de Kg/mes y eficiencias de funcionamiento por unidad de tiempo.
Fuente: Calcular realizado según el artículo cálculo de la capacidad de un sistema de producción. Leguízamón Castellanos

La información ilustrada en la tabla anterior, muestra detalladamente los datos resultantes de los cálculos de capacidades en función del tiempo, teniendo en cuenta la sustracción de tiempos de ociosidad, y disponibilidad para la realización del trabajo ejecutado en el turno dado.

13.2.5.1. CAPACIDAD DEL CICLO PRODUCTIVO GENERAL PARA LA OBTENCIÓN DE BOTONES PLÁSTICOS

I. CAPACIDAD REAL (CR)

Contemplando la información del molde y su capacidad en términos de tiempo la capacidad real quedaría de la siguiente forma:

- Molde de 1050 orificios en forma cilíndrica con 2 agujas dentro de cada uno, con el fin de moldear y agujerear la materia prima obteniendo el botón como producto terminado.

- Cada placa contenedora del molde tiene unas dimensiones de 1,98 m X 1,98 m.

- El tiempo necesario para obtener 1050 botones en promedio es de 30 seg.
Entonces sí 1.050 botones se procesan en 30 seg, en una hora se procesan 126.000 botones (ecuación 42).

Por lo tanto, la capacidad real para la inyectora contemplando la capacidad de moldeo es de 126.000 botones/hora, equivalentes a 461,16 kg/h y por consiguiente a **92.232 kg/mes**.

Tabla 35 Capacidad real del ciclo productivo general para la obtención de botones plásticos

<table>
<thead>
<tr>
<th>MAQUINARIA</th>
<th>DESCRIPCIÓN DEL PROCESO</th>
<th>CAPACIDAD REAL (kg/mes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinta transportadora Lineal con cinturón PU/PVC</td>
<td>Transporte de material</td>
<td>102.240</td>
</tr>
<tr>
<td></td>
<td>granulado (PP)</td>
<td></td>
</tr>
<tr>
<td>Máquina automática de moldeo por inyección NISSEI</td>
<td>Fundir, moldear y agujerear</td>
<td>92.232</td>
</tr>
<tr>
<td>PLASTIC FVX-III 1100- 600 L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capacidad real admisible para Producir a nivel general 92.232

Fuente: Autoras

En la tabla 35 se evidencia la capacidad real admisible en procesamiento para la cinta transportadora y la inyectora; información necesaria para determinar de acuerdo al tiempo de ejecución por proceso, el promedio mensual (PM) mostrado en la ecuación 43.

\[
PM = \frac{CR}{\text{Peso 1 botón}}
\]

\[
PM = \frac{92.232 \text{ kg/mes}}{0.003666 \text{ kg/botón}} = 25.200.000 \text{ botones/mes}
\]

Es decir que comparado con la producción requerida más alta (25.172.558 botones/mes) correspondiente al mes de marzo, agosto, septiembre y diciembre del año 2022 dentro del horizonte de planeación, la capacidad admisible de la maquinaria contemplada en el estudio está calificada en rendimiento y utilidad por encima de la demanda actual, estando a su vez preparada para un aumento de la misma, sin necesidad de incurrir en gastos adicionales por concepto de adquisición de maquinaria más potente.
14. FASE III: SIMULACIÓN DEL PROCESO PRODUCTIVO

Diagrama 9 Fase 3: Simulación del proceso productivo

Fuente: Autoras
El simulador Arena se descarga el día 30 de marzo del presente año en el computador personal de cada autora, presentando limitaciones en cuanto al número de entidades que permite reconocer el software durante la corrida para la simulación; es por esto que, se toma un tamaño de unidad para la utilización y el ingreso de tiempos de procesamiento y datos por pedido de 10 KG.

En la tabla 36 se relacionan los datos, que fueron utilizados en la simulación.

Tabla 36 Datos implementados en la simulación

<table>
<thead>
<tr>
<th>OPERACIÓN</th>
<th>KG</th>
<th>TIEMPO (MESES)</th>
<th>KG(DÍA)</th>
<th>Kg/seg</th>
<th>DESVIACIÓN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMANO ENTIDAD</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CINTA TRANSPORTADORA</td>
<td>102.240</td>
<td>1</td>
<td>4.090</td>
<td>70,4225</td>
<td>3,5211</td>
</tr>
<tr>
<td>INYECTORA</td>
<td>92.232</td>
<td>1</td>
<td>3.689</td>
<td>78,064</td>
<td>3,9032</td>
</tr>
<tr>
<td>SALIDA</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMANO ENTIDAD</td>
<td>10</td>
<td>2,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EXTRUSORA</td>
<td>194.400</td>
<td>1</td>
<td>7.776</td>
<td>37,037</td>
<td>1,8519</td>
</tr>
<tr>
<td>PEINADORA</td>
<td>131.712</td>
<td>1</td>
<td>5.268</td>
<td>54,6647</td>
<td>2,7332</td>
</tr>
<tr>
<td>TEJEDORA</td>
<td>199.800</td>
<td>1</td>
<td>7.992</td>
<td>36,036</td>
<td>1,8018</td>
</tr>
<tr>
<td>LAVADORA</td>
<td>126.720</td>
<td>1</td>
<td>5.069</td>
<td>56,8182</td>
<td>2,8409</td>
</tr>
<tr>
<td>CORTADORA</td>
<td>190269</td>
<td>1</td>
<td>7611</td>
<td>37,8412</td>
<td>1,8921</td>
</tr>
<tr>
<td>SALIDA</td>
<td>10</td>
<td>2,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autoras
De acuerdo a lo anterior, se introducen los datos al software (figura 16). Cabe resaltar que los valores ingresados corresponden a la relación que existe entre la máquina y los kilogramos que procesa por segundo cada una, así que de acuerdo a la producción mensual que se muestra en la segunda columna de la anterior tabla se calcula la producción diaria dividiendo la producción mensual entre los días trabajados por mes (se maneja un promedio de 25 días) como se muestra en la cuarta columna de la misma tabla para posteriormente calcular los kilogramos procesados por segundo que se introducen en el código de Arena; dicho valor se obtiene de tomar el tamaño de la entidad (10 kg) dividirlo por la cantidad procesada diariamente y a su vez multiplicándolo por los 28800 seg/día teniendo claro que por día se trabaja un turno de 8 horas.

Figura 16 Ingreso de datos al simulador Arena

<table>
<thead>
<tr>
<th>Basic Process</th>
<th>Name</th>
<th>Type</th>
<th>Action</th>
<th>Priority</th>
<th>Resources</th>
<th>Delay Type</th>
<th>Units</th>
<th>Allocation</th>
<th>Value</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Funcion y extraccion del material escarpeno</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>37.04</td>
<td>1.8519</td>
</tr>
<tr>
<td></td>
<td>Estramiento de Hilos</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>54.66</td>
<td>2.7352</td>
</tr>
<tr>
<td></td>
<td>Tejido de punto</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>38.04</td>
<td>1.8418</td>
</tr>
<tr>
<td></td>
<td>Lavado tejido y secado de tela</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>56.82</td>
<td>2.6409</td>
</tr>
<tr>
<td></td>
<td>Corte y rebobinado de tela</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>37.84</td>
<td>1.8821</td>
</tr>
<tr>
<td></td>
<td>Bodega PET</td>
<td>Standard</td>
<td>Delay</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Constant</td>
<td>Days</td>
<td>Value Added</td>
<td>10.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transporte de material</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>70.42</td>
<td>3.5211</td>
</tr>
<tr>
<td></td>
<td>Funcion del Material PP</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Normal</td>
<td>Seconds</td>
<td>Value Added</td>
<td>73.06</td>
<td>3.9632</td>
</tr>
<tr>
<td></td>
<td>Almacenamiento PET</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Constant</td>
<td>Seconds</td>
<td>Value Added</td>
<td>50.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Almacenamiento PP</td>
<td>Standard</td>
<td>Select Delay Release</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Constant</td>
<td>Seconds</td>
<td>Value Added</td>
<td>74.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bodega PP</td>
<td>Standard</td>
<td>Delay</td>
<td>Medium(2)</td>
<td>1 revs</td>
<td>Constant</td>
<td>Days</td>
<td>Value Added</td>
<td>10.50</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autoras

Ya con esto y partiendo de que la Cantidad Optima de pedido para la tela (Hojuela PET) y para los botones (Granulado PP) considerando el tamaño de la entidad (10 kg) ingresada en el software es de 26.100 y 18.350 kg respectivamente como se muestra en la figura 17, se relacionan con el número de pedidos por material proyectados a realizar en los 12 meses del horizonte de planeación junto con el número de días que necesitan trascurrir para volver a pedir.

Figura 17 Entidades por arribo

<table>
<thead>
<tr>
<th>Name</th>
<th>Entity Type</th>
<th>Type</th>
<th>Value</th>
<th>Units</th>
<th>Entidades per Arrival</th>
<th>Max Arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepcion Hojuela PET</td>
<td>Hojuela PET</td>
<td>Constant</td>
<td>72</td>
<td>Days</td>
<td>28100</td>
<td>5</td>
</tr>
<tr>
<td>Recepcion PP Granulado</td>
<td>PP Granulado</td>
<td>Constant</td>
<td>60</td>
<td>Days</td>
<td>18350</td>
<td>6</td>
</tr>
</tbody>
</table>

Fuente: Autoras
Seguido a esto se corre la simulación con los recursos y datos anteriormente evidenciados, por lo que para efectos de presentación y visualización se entrega en video con formato.avi, obteniendo como resultado que en 360 días se procesa totalmente el material pedido alrededor de los 12 meses que se contemplan inicialmente en el estudio, representando un total en salidas de 1.305.000 Kg PET/ HP y 1.101.000 Kg PP/ HP respectivamente (ecuación 44), considerando el número de veces que se realiza un nuevo pedido en este mismo intervalo de tiempo, 5 pedidos para la tela y 6 para los botones, es decir que el total de salidas se comprobará multiplicando la cantidad de pedidos por producto (máx. de arribos) con el lote pedido en cuestión o mejor por la cantidad de pedido óptimo (entidades por arribo).

\[\text{Total salidas} = (\text{Entidades x arribo})(\text{máx. arribos})(\text{tamaño entidad}) \quad (4433) \]

\[\text{Total salidas PET} = (26.100)(5)(10 kg) = 1.305.000 \ kg/HP \]

\[\text{Total salidas PP} = (18.350)(6)(10 kg) = 1.101.000 \ kg/HP \]

NOTA: En relación a la simulación se contempla un tiempo de replicaciones de 365 días.

En la figura 18 se evidencia una muestra de las entradas, procesos y salidas, en la simulación 2D.

Figura 18 muestra de las entradas, procesos y salidas, en la simulación 2D

Fuente: Autoras
14.1. PRODUCTIVIDAD TELA Y BOTONES A PARTIR DE RESULTADOS SIMULACIÓN

14.1.1. PRODUCTIVIDAD TELA

14.1.1.1. GENERALIDADES DEL PRODUCTO

A. PRODUCCIÓN

Metros de tela: 10.609.655 m de tela por 12 meses del Horizonte de planeación.
Kg: 1.384.560 Kg/ HP
Precio de venta: $ 8.000 por metro.
Dimensiones por rollo rebobinado: 0,5 M de diámetro X 1.20 M de longitud, con un volumen de 1570 m3 y un área para almacenar 6.667 rollos de tela de 150 m cada uno de 135 m2.

B. MATERIA PRIMA

Costo: Según datos recolectados de la encuesta realizada por la alcaldía de Soacha a las bodegas, centros de acopio y estaciones de clasificación del municipio, el promedio de compra de un kilogramo de PET es de $700 COP. Es decir que, en términos de 10 Kg el costo será de $7000 COP.

Información adicional Costo metro de Tela: Según (González, 2012) para producir 1 metro de tela son necesarias 3 botellas plásticas de 2,5 litros, con un peso neto de 43,5 gr cada una, por lo tanto, si se requieren 130,5 gr de material granulado para obtener 1 metro de tela poliéster, el costo de la misma será dado por la ecuación 45:

$$CMP_{tela} = (Peso de 1 m de tela)(Precio de 1 Kg de PET)$$

$$CMP_{tela} = (0,1305 kg)($700) = $91.35 por metro$$

Entonces, el costo de la materia prima necesaria para la producción de 10.609.655 m de tela para enero 2023 será de $969.191.984 por metros producidos.

C. MANO DE OBRA

Trabajadores = 7 operarios (Uno por máquina y dos distribuidos en los almacenes de materias primas y producto terminado)
Número de horas laborales = 8 horas de trabajo
Días Laborados Horizonte Planeación = 299 días
Valor hora = $3.255
14.1.2. PRODUCTIVIDAD BOTONES

14.1.2.1. GENERALIDADES DEL PRODUCTO

A. PRODUCCIÓN

Botones por Horizonte de Planeación: 289'259.821 botones/HP
Equivalencia en Kg: 1061583,5 kg/HP.
Precio de venta: $ 300 c/u
Dimensión botón: cada botón debe tener un diámetro de 12 mm con un grosor de 4 mm.

B. MATERIA PRIMA

Costo: Según datos recolectados de la encuesta realizada por la alcaldía de Soacha a las bodegas, centros de acopio y estaciones de clasificación del municipio, el promedio de compra de un kilogramo de PP es de $600 pesos. Es decir que, en términos de 10 Kg el costo será de $6.000 COP.

Información adicional Costo unidad por botón: Se requieren 200 tapas trituradas para formar una barra de PP de 480 mm de longitud, por medio de la cual se pueden obtener 120 botones. Cada tapa tiene un peso de 2,2 gr, las 200 necesarias pesaran 440 gr, el costo de la materia prima será dado por la ecuación 46:

\[
CMP_{botones} = \left(\frac{\text{Peso de 200 tapas}}{\# \text{Botones obtenidos}} \right) \left(\text{Costo 1 kg de PP} \right)
\]

\[
CMP_{botones} = \left(\frac{0,44 \text{ kg}}{120 \text{ Botones}} \right) ($600) = $2,2 \text{ por botón}
\]

Entonces, el costo de la materia prima necesaria para la producción de 289'259.821 unidades de botones son $636.371.606 por botones producidos anualmente.
C. MANO DE OBRA

Trabajadores = 4 operarios (Uno por cada máquina y dos distribuidos en los almacenes de materia prima y producto terminado)

Número de horas laborales = 8 horas de trabajo

Días Laborados Horizonte Planeación = 299 días

Valor hora = $3.255

14.2. ANÁLISIS RESULTADOS PRODUCTIVIDAD

En la tabla 37 se detallan las unidades a procesar de acuerdo a lo ingresado en la simulación, así como también los costos de materia prima, los costos de producción por hora, y el precio de venta por unidad.

Lo anterior con el fin de calcular el índice de Productividad para la materia prima, la producción –procesamiento- y para el índice de productividad total correspondiente a la producción de la tela poliéster y botones plásticos.

Tabla 37 Productividad por producto

<table>
<thead>
<tr>
<th>DATOS</th>
<th>TELA</th>
<th>BOTONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salida (en unidades)</td>
<td>26.100,00</td>
<td>18.350,00</td>
</tr>
<tr>
<td>Precio de Venta unitario</td>
<td>560.000,00</td>
<td>817.439,00</td>
</tr>
<tr>
<td>Costo de Producción x Hora</td>
<td>242.065,73</td>
<td>238.310,17</td>
</tr>
<tr>
<td>Nº de Horas de Mano de Obra utilizadas</td>
<td>240,00</td>
<td>240,00</td>
</tr>
<tr>
<td>Costo Unitario de Materia Prima</td>
<td>7.000,00</td>
<td>6.000,00</td>
</tr>
<tr>
<td>Entradas (en unidades)</td>
<td>26.100,00</td>
<td>18.350,00</td>
</tr>
<tr>
<td>Uso</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Fuente: Autoras

14.2.1. PRODUCTIVIDAD PARCIAL

Para el cálculo de los índices de la productividad parcial de la materia prima y la producción –procesamiento-, se requiere hacer uso de las ecuaciones del apartado 6.8. Para efectos del estudio, se analizarán los resultados de los índices de productividad con periodicidad de cada 30 días. Todo esto con el fin de calcular y
observar el comportamiento e interacción de cada índice frente a las entidades producidas en un intervalo de tiempo y costos determinados.

Lo anterior se refleja en la tabla 38 con el consolidado dentro del HP.

Tabla 38 Productividad Parcial de tela y botones

<table>
<thead>
<tr>
<th>Tela</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad Parcial en Términos de Producción</td>
<td>99,9</td>
<td>122,1</td>
<td>96,8</td>
<td>109,2</td>
<td>106,5</td>
<td>105,1</td>
<td>107,8</td>
<td>102,9</td>
<td>107,2</td>
<td>101,6</td>
<td>105,7</td>
<td>104,8</td>
</tr>
<tr>
<td>Productividad de Materia Prima</td>
<td>31,7</td>
<td>77,6</td>
<td>46,2</td>
<td>69,5</td>
<td>56,4</td>
<td>66,8</td>
<td>80</td>
<td>65,4</td>
<td>76,7</td>
<td>64,6</td>
<td>73,9</td>
<td>80</td>
</tr>
<tr>
<td>Productividad Total</td>
<td>24,1</td>
<td>47,4</td>
<td>31,2</td>
<td>42,4</td>
<td>36,9</td>
<td>40,8</td>
<td>45,9</td>
<td>40</td>
<td>44,7</td>
<td>39,5</td>
<td>43,5</td>
<td>45,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Botones</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad Parcial en Términos de Producción</td>
<td>107,8</td>
<td>131,1</td>
<td>122,5</td>
<td>131,1</td>
<td>125,9</td>
<td>131,1</td>
<td>127,5</td>
<td>131,1</td>
<td>127,7</td>
<td>131,1</td>
<td>128,8</td>
<td>131,1</td>
</tr>
<tr>
<td>Productividad de Materia Prima</td>
<td>56,0</td>
<td>68,1</td>
<td>95,5</td>
<td>90,8</td>
<td>109,1</td>
<td>102,2</td>
<td>115,9</td>
<td>108,9</td>
<td>119,4</td>
<td>113,5</td>
<td>122,6</td>
<td>136,2</td>
</tr>
<tr>
<td>Productividad Total</td>
<td>36,8</td>
<td>44,8</td>
<td>53,7</td>
<td>53,6</td>
<td>58,5</td>
<td>57,4</td>
<td>60,7</td>
<td>59,5</td>
<td>61,7</td>
<td>60,8</td>
<td>62,8</td>
<td>66,8</td>
</tr>
</tbody>
</table>

Fuente: Autoras.

Como previamente se mencionó, este consolidado proporciona los valores resultantes del cálculo de cada índice mediante la sustitución en datos según las ecuaciones formuladas para cada caso. A partir de esta información obtenida a través de datos en la simulación con un ciclo de duración de 3 horas y 5 minutos, se observa que la productividad de la materia prima se relaciona con la productividad total, sin embargo, la productividad en términos de producción tiende a ser variable según el punto de corte en el que se toma la medida en función del tiempo. Esto se debe a que el costo en términos de producción es constante a través del tiempo de ejecución, mientras el costo de materia prima es variable según el tiempo del mismo.

Con la intención de proporcionar una información completa se incluyen las gráficas 9 y 10, que ilustran el comportamiento que sigue cada índice.
Es así como se puede argumentar que la productividad total se vuelve una relación entre la productividad parcial de la materia prima y la producción.
15. CONCLUSIONES

15.1. FASE I: PRUEBAS DE LABORATORIO

La caracterización de los materiales dio como resultado que:

- La tela poliéster común se estira un 18% hasta romperse, muy por debajo del 97% en sentido longitudinal y el 118% en transversal de la tela ecológica otorgando ventajas con respecto a la costura o fabricación de prendas de vestir, debido a la capacidad de elongación del hilo a la ruptura, minimizando la generación de grandes bucles.

- La resistencia a la tensión de la tela poliéster ordinaria es menor en ambos sentidos, 100 N en sentido longitudinal y 72 N en sentido transversal con respecto al comportamiento de la tela ecológica que cuenta con 448,93 N y 502,70 N respectivamente, representando el aumento de la durabilidad de la tela.

- La tela se compone de filamentos resistentes que permiten conservar su color y asegurar un cambio mínimo en términos de desgaste en sus primeros 15.500 ciclos de fricción ofreciendo durabilidad y presentación al producto.

- Se descarta el uso del material granulado con presencia de gases (flúor - cloro) y vapores (bromo - yodo) halógenos, ya que, dentro del proceso productivo se requiere una fundición del material, por lo que al estar expuesto al calor emana gases tóxicos para el trabajador, provocando afectaciones en la salud del mismo como la aparición de edema pulmonar y la calidad del aire en el ambiente.

15.2. FASE II: PROCESO PRODUCTIVO

- La extrusora y el manuár para la tela y la inyectora para los botones, conforman el grupo de máquinas que suplen varios procesos dentro de sus funciones así: extrusora -corte, compactado, extrusión, desgasificado, filtrado/tamizado-, manuar -unión de filamentos Poliéster y peinado de hilatura- e inyectora -Fundido, moldeo, agujereado-, minimizando así la cantidad en recursos (maquinas), la duración en intervalos de tiempo y la mano de obra a emplear por máquina.

- Debido a las propiedades del material que permiten su conservación en bodega, se usa el modelo de asignación EOQ, ya que este permite llegar al punto óptimo entre la cantidad de existencias en inventario y costos por pedido. En este mismo se puede apreciar que el costo de pedir es
evidentemente más alto frente al costo de mantener para ambos productos ($3,065,539,82 por cada pedido frente a los $0,709 por unidad almacenada en inventario para botones, mientras que para la tela el costo por hacer un pedido es de $2,312,988 frente a los $12,27 por unidad representados en los metros existentes en inventario en intervalo de tiempo) haciendo factible la posibilidad de pedir un lote de producción que supla las necesidades de varios periodos almacenando unidades para procesar en bodega.

- Se proyecta considerar la adquisición de la maquinaria presentada en la fase 2 a 5 años, teniendo en cuenta la vida útil de la misma, puesto que cumple con los procesos establecidos en el planeamiento, integrando eficiencia y altas capacidades en procesamiento del material alcanzando los 126,720 kg de tela al mes y 92,232 kg de botones mensualmente, equivalentes a 971,034 metros de tela y 25,200,000 botones al mes, dos aspectos básicos debido a que se estima que la demanda aumente a largo plazo.

15.3. FASE III: SIMULACIÓN

- Según la simulación (Arena), se evidencia tiempo de espera en colas en términos de segundos en la peinadora y la lavadora- teñidora dentro del proceso productivo de la tela; por lo que se sugiere se trabajen dos (2) turnos diarios en las mismas, considerando que si se presenta un comportamiento ascendente de la demanda se logre dar abasto a la producción evitando cuellos de botella en mayores cantidades, impidiendo que se disminuya la velocidad en los procesos.

- La productividad parcial en términos de producción es equivalente al tiempo que tarda cada pedido en llegar, ya que en este punto es donde se habrá considerado una productividad real con respecto a la fabricación, evidenciado en los valores que se presentan en la tabla 76 comparando los índices de productividad para la tela y los botones como producto terminado.

15.4. CONCLUSIÓN GENERAL

Se diseñó un sistema productivo por medio de un plan maestro –MPS-categorizado como sistema push (empujar), considerando mecanismos estratégicos mediante el manejo de datos proyectados, estableciendo un horizonte de planeación demarcado a lo largo de doce meses con una demanda determinística, en donde se obtuvo una productividad total al día 360 cuando han entrado y procesado el total en pedidos del horizonte de planeación de 45,3% para la tela y 66,8% para los botones, con un total en salidas de 1,305,000 metros y 1,101,000 botones plásticos respectivamente.
16. RECOMENDACIÓN

Se recomienda a los estudiantes de ingeniería industrial de la UDEC, formar parte del semillero de Investigación SIEDES y complementar el presente estudio productivo, nutriendo el macroproyecto que se adelanta, con investigaciones enfocadas hacia áreas específicas como lo pueden ser: estudios de mercado en la zona (micro y macro-localización), estudios de comportamiento social y estudios financieros relacionando variables como ingresos, egresos, inversión y retorno de la misma. Todo esto con ánimos de aportar para el desarrollo social e industrial en el sector de Soacha mediante la cultura del reciclaje y la reutilización de materiales poliméricos, enfatizando en el uso global de cada uno.
BIBLIOGRAFÍA

Alcaldía de Soacha - Cundinamarca. (s.f.). Obtenido de http://www.soacha-cundinamarca.gov.co/documentos_municipio.shtml?apc=bfx-1-
&r=Medio%20Ambiente

Curiosoando. (3 de julio de 2014). ¿que tipos de plástico se pueden reciclar? Obtenido de https://curiosoando.com/que-tipos-de-plastico-se-pueden-reciclar

Ecoestrategia.com. (s.f.). Obtenido de Indicadores ambientales: http://www.ecoestrategia.com/articulos/indicadores/indicadores.html#02

Enka de Colombia. (s.f.). Obtenido de Eko: http://www.eko.com.co/reciclaje.html

Fundación Sanar. (13 de Mayo de 2016). Alianza 4-72 y sanar. Obtenido de Fundación Sanar: http://www.4-72.com.co/content/alianza-4-72-y-sanar

Gaither, N., & Frazier, G. (s.f.). Administración de producción y operaciones (Octava ed.). Thomson.

INSTRON. (s.f.). INSTRON. Recuperado el 8 de Mayo de 2018, de http://www.instron.es/es-es/testing-solutions/by-material/textiles/tension/astm-d5034

Ladyverd. (8 de enero de 2016). Ladyverd. Obtenido de http://www.ladyverd.com/el-verdadero-precio-de-las-botellas-de-plastico/

Leguizamón Castellanos, L. E. (s.f.). slideshare. Obtenido de https://es.slideshare.net/luigi14777/capacidad-32007781

Logistica y abastecimiento. (s.f.). Logistica y abastecimiento. Recuperado el 14 de Abril de 2018, de https://logisticayabastecimiento.jimdo.com/gerenci%C3%B3n%20de%20la%20corte%20de%20la%20carga/

Ministerio de Ambiente, V. y. (2004). Guías Ambientales Sector Plásticos. Guía ambiental. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Viceministerio de Ambiente, Bogotá D.C. Obtenido de http://www.siame.gov.co/siame/documentos/Guias_Ambientales/Gu%C3%ADas%20Resoluci%C3%B3n%20201023%20del%2020128%20de%20julio%20de%202005/INDUSTRIAL%20MANUFACTURERO/Guia%20ambiental%20sector%20pl%C3%A1sticos.pdf

MATAMOROS, TAMAULIPAS. Revista Luna Azul(37), 155-161. Obtenido de http://www.redalyc.org/articulo.oa?id=321729206011

Sacal, S. (17 de Septiembre de 2015). ¿Usarias zapatos hechos con PET reciclado? IZQ MX. Obtenido de https://www.youtube.com/watch?v=BQPk-t7BdIA&t=6s

125
Anexo A Evidencia fotográfica visita Laguna Tierra Blanca

Fuente: Autoras

Anexo B Ficha técnica visita Laguna Tierra Blanca

<table>
<thead>
<tr>
<th>FICHA TÉCNICA</th>
<th>VISITA LAGUNA TIERRA BLANCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECHA</td>
<td>23 septiembre 2016</td>
</tr>
<tr>
<td>LUGAR DE VISITA</td>
<td>Laguna Tierra Blanca</td>
</tr>
<tr>
<td>UBICACIÓN</td>
<td>Comuna 1</td>
</tr>
<tr>
<td>DESCRIPCIÓN DE LO EVIDENCIADO</td>
<td>Dentro de la Laguna se evidencian un alto estado de deterioro por parte de la contaminación de las aguas residuales del sector y por la acumulación de residuos sólidos, entre ellos, el PET.</td>
</tr>
</tbody>
</table>

Fuente: Autoras
<table>
<thead>
<tr>
<th>FICHA TÉCNICA VISITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECHA</td>
</tr>
<tr>
<td>TIPO DE NEGOCIO</td>
</tr>
<tr>
<td>DIRECCIÓN</td>
</tr>
<tr>
<td>BARRIO</td>
</tr>
<tr>
<td>COMUNA</td>
</tr>
<tr>
<td>PROPIETARIA</td>
</tr>
<tr>
<td>CANTIDAD DE TRABAJADORES</td>
</tr>
<tr>
<td>CAPACIDAD DE ALMACENAMIENTO PET EN LA BODEGA</td>
</tr>
<tr>
<td>FORMA DE RECOLECCIÓN</td>
</tr>
<tr>
<td>¿COMpra a Recicladores?</td>
</tr>
<tr>
<td>COMPRA EN CHATARRERÍA Y RECICLADORES</td>
</tr>
<tr>
<td>RECOLECCIÓN Y TRANSPORTE</td>
</tr>
<tr>
<td>CAPACIDAD CAMIÓN</td>
</tr>
<tr>
<td>¿COMpra a Recicladores?</td>
</tr>
<tr>
<td>¿CUENTAN CON CONOCIMIENTOS DE CLASIFICACIÓN DE LOS RESIDUOS?</td>
</tr>
<tr>
<td>FORMA DE SEPARACIÓN</td>
</tr>
<tr>
<td>TIEMPO DE SEPARACIÓN</td>
</tr>
<tr>
<td>FORMA DE CLASIFICACIÓN DEL PET</td>
</tr>
<tr>
<td>¿Dónde VENDEN EL PET?</td>
</tr>
<tr>
<td>VENTA DEL PET SUCIO (ETIQUETA MAS TAPA)</td>
</tr>
<tr>
<td>VENTA DEL PET LIMPIO (SIN ETIQUETA NI TAPA)</td>
</tr>
<tr>
<td>SEGÚN SU CONOCIMIENTO ¿DÓNDE TERMINA EL RECICLAJE RECOLECTADO EN SOACHA?</td>
</tr>
</tbody>
</table>

Fuente: Autoras
Anexo D Vista interna de la bodega

Fuente: Autoras

Anexo E Materiales encontrados dentro de la bodega

Fuente: Autoras
Anexo F Evidencia fotográfica Fase 1: Pruebas de laboratorio

Fuente: Autoras

Anexo G Peso de las escamas de plástico más el vidrio de reloj

Fuente: Autoras
Anexo H Peso barra de aluminio

Fuente: Autoras

Anexo I Calentamiento de las escamas de plástico

Fuente: Autoras
Anexo J Reacción del polipropileno con el fuego

Fuente: Autores
Anexo K Ficha técnica de la maquina Extrusora Intarema 1716 TVEplus

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>EREMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>EXTRUSORA INTAREMA 1716 TVEplus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRODUCCIÓN MEDIA</th>
<th>1400 kg/h – 1800 kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONGITUD</td>
<td>24,10 m</td>
</tr>
<tr>
<td>ANCHO</td>
<td>5,34 m</td>
</tr>
<tr>
<td>ALTO</td>
<td>5,55 m</td>
</tr>
<tr>
<td>ENERGÍA (W)</td>
<td>150 kW</td>
</tr>
<tr>
<td>VOLTAJE</td>
<td>380 V 50 Hz 3 Fase (Personalizado)</td>
</tr>
<tr>
<td>PESO</td>
<td>15 ton</td>
</tr>
</tbody>
</table>

PAGINA WEB

Fuente: Erema, 2014
Anexo L Ficha técnica de máquina manuár Truetzschler-Toyota Superlap TSL

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>TRUETZSCHLER SPINNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>MANUAR Truetzschler-Toyota Superlap TSL 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANTIDAD</th>
<th>Ø BOTE</th>
<th>L</th>
<th>L1</th>
<th>ESPACIO NECESARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>600</td>
<td>6018</td>
<td>6638</td>
<td>37,2 m²</td>
</tr>
<tr>
<td>32</td>
<td>600</td>
<td>6018</td>
<td>7907</td>
<td>44,4 m²</td>
</tr>
<tr>
<td>24</td>
<td>1000</td>
<td>6435</td>
<td>8823</td>
<td>56 m²</td>
</tr>
<tr>
<td>32</td>
<td>1000</td>
<td>6435</td>
<td>10816</td>
<td>69 m²</td>
</tr>
</tbody>
</table>

PRODUCCIÓN: 400 kg/h

VELOCIDAD DE ENTREGA: Max. 150 m/min

ANCHURA DE TRABAJO: 300 mm

DIÁMETRO DEL ROLLO: Max: 650 mm

DIÁMETRO DEL TUBO DEL ROLLO: 200 mm

TIEMPO DE FORMACIÓN DEL ROLLO: 3 min

TIEMPO DE CAMBIO DEL ROLLO: Inferior a 30 seg

PESO DEL ROLLO: Max. 25 kg

PESO DE LA NAPA: 50 a 80 ktex (300 mm de anchura)

ESTIRAJE TOTAL: 1,14 a 3,33

DIÁMETRO DE LOS BOTES: 600 a 1000 mm

ALTURA DE LOS BOTES: 1000 a 1500 mm

DOBLADO: 24 28 32 veces

POTENCIA TOTAL INSTALADA: 13,8 Kw

Fuente: Trützschler Spinning, 2014
Anexo M

Ficha técnica de la Tejedora circular orizio jersey de punto

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>REL-TEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>TEJEDORA CIRCULAR ORIZIO JERSEY DE PUNTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE PRODUCCIÓN</th>
<th>1.800 kg/hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELO</td>
<td>Yfsp</td>
</tr>
<tr>
<td>DIMENSIONES (LWH)</td>
<td>2 m * 2 m * 2 m</td>
</tr>
<tr>
<td>ENERGÍA (W)</td>
<td>5 kw</td>
</tr>
<tr>
<td>PESO</td>
<td>2500 kg</td>
</tr>
<tr>
<td>COLOR</td>
<td>Verde</td>
</tr>
<tr>
<td>GAUGE</td>
<td>16 G-32 G</td>
</tr>
<tr>
<td>DIÁMETRO</td>
<td>12 "- 28"</td>
</tr>
<tr>
<td>ALIMENTADORES</td>
<td>3f-4f-6f / pulgada</td>
</tr>
</tbody>
</table>

PAGINA WEB

Fuente: REL-TEX, 2018
Anexo N Ficha técnica de la maquina lavadora teñidora LVT 400

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>EFAMEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>LVT400 – LAVADORA TEÑIDORA CON SISTEMA DE SECADO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRODUCCIÓN MEDIA</th>
<th>400 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTAJE A REQUERIMIENTO</td>
<td>220 v / 380 v / 440 v 60 Hz Trifásico</td>
</tr>
<tr>
<td>VOLUMEN DEL TAMBOR</td>
<td>3.560 L</td>
</tr>
<tr>
<td>DIAMETRO DEL TAMBOR</td>
<td>1.800 mm</td>
</tr>
<tr>
<td>PROFUNDIDAD DEL TAMBOR</td>
<td>1.400 mm</td>
</tr>
<tr>
<td>DIÁMETRO DE LA PUERTA</td>
<td>1.000 mm</td>
</tr>
<tr>
<td>VELOCIDAD</td>
<td>0 – 45 rpm</td>
</tr>
<tr>
<td>POTENCIA DEL MOTOR</td>
<td>11 kw</td>
</tr>
<tr>
<td>SISTEMA HIDRÁULICO</td>
<td>1,8 kw</td>
</tr>
<tr>
<td>LONGITUD</td>
<td>2.500 mm</td>
</tr>
<tr>
<td>PROFUNDIDAD</td>
<td>2.800 mm</td>
</tr>
<tr>
<td>ALTURA</td>
<td>2.300 mm</td>
</tr>
</tbody>
</table>

OTROS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tambor</td>
<td>Acero inoxidable</td>
</tr>
<tr>
<td>Envolvente</td>
<td>Acero inoxidable</td>
</tr>
<tr>
<td>Frontal de la maquina</td>
<td>100% acero inoxidable</td>
</tr>
<tr>
<td>Variador de velocidad</td>
<td>Incluido</td>
</tr>
<tr>
<td>Contador de litros</td>
<td>Incluido</td>
</tr>
<tr>
<td>Control de temperatura</td>
<td>Incluido</td>
</tr>
<tr>
<td>PT-100 sensor de temperatura</td>
<td>Incluido</td>
</tr>
<tr>
<td>Control de tiempo</td>
<td>Incluido</td>
</tr>
<tr>
<td>Sistema Cosmodye</td>
<td>Incluido</td>
</tr>
<tr>
<td>Sistema hidráulico de descarga automática</td>
<td>Incluido</td>
</tr>
<tr>
<td>PAGINA WEB</td>
<td>www.efameinsa.com/equipos-de-lavanderia/lavadoras-teñidoras-en-venta-lima-peru/lvt400-efamein</td>
</tr>
</tbody>
</table>

Fuente: Efameinsa Corporacion Efameinsa e Ingeniería S.A, 2018
Anexo O Ficha técnica de la maquina automática cortadora y rebobinadora

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>REYID INDUSTRY I & M CO., LTDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>MAQUINA AUTOMÁTICA CORTADORA Y REBOBINADORA</td>
</tr>
</tbody>
</table>

ANCHO MÍNIMO DE PRODUCTO ACABADO	1100 mm
MÁXIMO DIÁMETRO DE MATERIA PRIMA	600 mm
DIÁMETRO DEL PRODUCTO ACABADO	450 mm
VELOCIDAD	Corta y rebobina hasta 180 m/min
PROPULSIÓN	4,5 K W
PESO	2200 kg
DIMENSIONES GLOBALES	1800 mm x 1800 mm x 1200 mm

Fuente: Reyid Industry I & M Co., LTDA
Ficha técnica de la banda transportadora lineal con cinturón PU/PVC

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>SOLUCIONES PLÁSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>TRANSPORTADORA LINEAL CON CINTURÓN PU/PVC</td>
</tr>
</tbody>
</table>

VELOCIDAD (V) 3,2 m/min.

DIMENSIONES
- **PO**: de 500 mm./ a 7000 mm. (incremento cada 50 mm.)
- **UT**: de 190 mm./ a 790 mm. (incremento cada 50 mm.)

PROPULSIÓN
Motoreductor asíncrono -3 Ph -4 polos-400 Vac – 50 Hz-0’18 KW

CINTA
Banda PU azul opaco RAL 5002

PESO
20 kg

ESTRUCTURA
Perfil extrusionado de aluminio anodizado y aluminio presofusión

LATERALES
Perfil extruido en aluminio anodizado

SOPORTES
Soportes telescópicos en aluminio presofusión patas tubulares en acero cincado con niveladores regulables

TRANSMISIÓN DIRECTA
En tracción (lateral izquierdo)

TEMPERATURA MAX. EN CONTINUO
100 °C

CONTROL
Start – Stop

PAGINA WEB

Fuente: Soluciones Plásticas
Ficha técnica máquina de moldeo por inyección tipo híbrido FVX 1100 III–600 L

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>NISSEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUINA:</td>
<td>MÁQUINA DE MOLDEO POR INYECCIÓN DE GRAN TAMAÑO TIPO HÍBRIDO FVX 1100 III – 600 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>DÍAMETRO DEL TORNILLO</td>
<td>112 mm -125 mm</td>
</tr>
<tr>
<td>CAPACIDAD DE INYECCIÓN</td>
<td>6.010 cm³ – 7.480 cm³</td>
</tr>
<tr>
<td>CAPACIDAD PLASTIFICANTE (PS)</td>
<td>580 kg/h – 785 kg/h</td>
</tr>
<tr>
<td>PRESIÓN DE INYECCIÓN</td>
<td>171 MPa – 138 MPa</td>
</tr>
<tr>
<td>TASA DE INYECCIÓN -ESTÁNDAR</td>
<td>591 cm³/s – 736 cm³/s</td>
</tr>
<tr>
<td>TASA DE INYECCIÓN -ALTA VELOCIDAD</td>
<td>1.182 cm³/s – 1.473 cm³/s</td>
</tr>
<tr>
<td>VELOCIDAD DE INYECCIÓN -ESTÁNDAR</td>
<td>60 mm/s – 60 mm/s</td>
</tr>
<tr>
<td>VELOCIDAD DE INYECCIÓN - ALTA VELOCIDAD</td>
<td>120 mm/s – 120 mm/s</td>
</tr>
<tr>
<td>VELOCIDAD DEL TORNILLO</td>
<td>0 rpm – 120 rpm</td>
</tr>
<tr>
<td>FUERZA TÁCTIL DE LA BOQUILLA</td>
<td>92 kN</td>
</tr>
<tr>
<td>CAPACIDAD DE HOOPER (OPCIONAL)</td>
<td>90 L</td>
</tr>
<tr>
<td>FUERZA DE SUJECIÓN</td>
<td>10.730 kN</td>
</tr>
<tr>
<td>TRAZO DE SUJECIÓN</td>
<td>1.250 mm</td>
</tr>
<tr>
<td>MOLDE (MIN – MAX)</td>
<td>600 mm – 1.150 mm</td>
</tr>
<tr>
<td>MAX. APERTURA DIURNA</td>
<td>2.410 mm</td>
</tr>
<tr>
<td>BARRA SEPARADORA (H x V)</td>
<td>1.400 mm x 1.400 mm</td>
</tr>
<tr>
<td>DIMENSIONES DE LA PLACA MATRIZ (H x V)</td>
<td>1.980 mm x 1.980 mm</td>
</tr>
<tr>
<td>MIN. DIMENSIONES DEL MOLDE (H x V)</td>
<td>930 mm x 930 mm</td>
</tr>
<tr>
<td>UBICACIÓN DEL DIÁMETRO DEL ANILLO</td>
<td>150 mm</td>
</tr>
<tr>
<td>FUERZA DE EXPULSIÓN</td>
<td>245 kN</td>
</tr>
<tr>
<td>RECORRIDO DEL EXPULSOR</td>
<td>200 mm</td>
</tr>
<tr>
<td>MOTOR DE BOMBA</td>
<td>37 kW x 3 + 4,5 kW</td>
</tr>
<tr>
<td>CAPACIDAD DE LA BANDA DEL CALENTADOR</td>
<td>57,26 kW</td>
</tr>
<tr>
<td>CANTIDAD DE ACEITE HIDRÁULICO</td>
<td>2.000 L</td>
</tr>
<tr>
<td>DIMENSIONES DE LA MAQUINA (L x W x H)</td>
<td>12,26 m x 2,85 m x 2,76 m</td>
</tr>
<tr>
<td>DIMENSIONES DEL PISO (L x W)</td>
<td>11,31 m x 2,05 m</td>
</tr>
<tr>
<td>PESO DE LA MAQUINA</td>
<td>60,5 TON</td>
</tr>
<tr>
<td>FUENTE DE ALIMENTACIÓN</td>
<td>3- Fase AC 400 V (380 V-480 V)</td>
</tr>
</tbody>
</table>

Fuente: NISSEI PLASTIC INDUSTRIAL CO., LTD., 2015
Anexo R Cálculo de la capacidad de producción de la extrusora Erema Intarema 1716 TVEplus

EXTRUSORA EREMA INTAREMA 1716 TVEPLUS

I. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[TMM = \sum \text{Tiempos de la máquina durante un ciclo determinado} \]

\[TMM = (30 \text{ días/mes}) (24 \text{ horas/día}) = 720 \text{ horas/mes} \] \((15) \)

II. Tiempo no disponible (TnD)

\[TnD = \sum \text{festivos, turnos no trabajados} \]

\[TnD = ((#\text{Días no trabajados en el mes}) (#\text{Horas de un día}) + ((#\text{Horas de un día}) - (#\text{Horas trabajas en el día})) \]

\[* (#\text{Días trabajados en el mes}) \]

\[TnD = (6 \text{ días/mes}) (24 \text{ horas/día}) + (24 \text{ horas/día}) - (8 \text{ horas/día}) \]

\[* (25 \text{ días/mes}) = 544 \text{ horas/mes} \]

III. Tiempo de no operación (TnO)

\[TnO = \text{Interrupciones planeadas, mantenimiento preventivo} \]

\[TnO = (40 \text{ min/turno}) (1 \text{ turno/día}) = 40 \text{ min/día} \]

\[TnO = \frac{(40 \text{ min/día})}{(60 \text{ min/hora})} = 0,666 \text{ hora/día} \]

\[TnO = (0,666 \text{ hora/día}) (25 \text{ días/mes}) = 16,65 \text{ horas/mes} \]

IV. Tiempo de no producción (TnP)

\[TnP = (\text{Alistamiento y preparación + cargue y descargue} + \text{paradas y arrancadas + aseo}) \]

\[TnP = 4 \text{ h/mes} + 25 \text{ h/mes} + 10 \text{ h/mes} + 10 \text{ h/mes} \]

\[TnP = 49 \text{ horas/mes} \]
V. Tiempo de no funcionamiento (TnF)

\[TnF = \text{Interrupciones inesperadas (Daños y averías de la maquina)} \]
\[TnF = 2 \text{ horas/mes} \]

VI. Tiempo de ajuste (Ta)

\[Ta = \text{Interrupciones pequeñas de todo tipo} \]
\[Ta = 0,35 \text{ horas/mes} \]

VII. Capacidad disponible (CD)

\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]
\[CD = \left(176 \frac{\text{horas}}{\text{mes}}\right) \left(1,800 \frac{\text{kg}}{\text{horas}}\right) = 316,800 \frac{\text{kg}}{\text{mes}} \]

VIII. Capacidad de operación (CO)

\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]
\[CO = \left(159,35 \frac{\text{horas}}{\text{mes}}\right) \left(1,800 \frac{\text{kg}}{\text{horas}}\right) = 286,830 \frac{\text{kg}}{\text{mes}} \]

IX. Capacidad de producción (CP)

\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]
\[CP = \left(110,35 \frac{\text{horas}}{\text{mes}}\right) \left(1,800 \frac{\text{kg}}{\text{horas}}\right) = 198,630 \frac{\text{kg}}{\text{mes}} \]

X. Capacidad de funcionamiento (CF)

\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]
\[CF = \left(108,35 \frac{\text{horas}}{\text{mes}}\right) \left(1,800 \frac{\text{kg}}{\text{horas}}\right) = 195,030 \frac{\text{kg}}{\text{mes}} \]

XI. Capacidad real (CR)

\[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina}) \]
\[CR = \left(108 \frac{\text{horas}}{\text{mes}}\right) \left(1,800 \frac{\text{kg}}{\text{horas}}\right) = 194,400 \frac{\text{kg}}{\text{mes}} \]
XII. Eficiencia total (ET)

\[ET = \left(\frac{CR}{CD} \right) (100) \]

\[ET = \left(\frac{108 \text{ horas/mes}}{176 \text{ horas/mes}} \right) (100) = 61,36\% \]

XIII. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \]

\[EO = \left(\frac{108 \text{ horas/mes}}{159,35 \text{ horas/mes}} \right) (100) = 67,78\% \]

XIV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \]

\[EP = \left(\frac{108 \text{ horas/mes}}{110,35 \text{ horas/mes}} \right) (100) = 97,87\% \]

XV. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \]

\[EF = \left(\frac{108 \text{ horas/mes}}{108,35 \text{ horas/mes}} \right) (100) = 99,68\% \]
Anexo S Cálculo de la capacidad de producción del manuár Truetzschler-Toyota Superlap TSL 12 con rodillos de goma

MANUAR TRUETZSCHLER-TOYOTA SUPERLAP TSL 12 CON RODILLOS DE GOMA

I. Capacidad de transmisión y sellado térmico

\[CTST = (\text{vel. máx.})(\text{peso 1m de tela})(60\text{ min/h}) \]
\[CTST = (150 \text{ m/min})(0,1305 \text{ kg/m})(60\text{ min/h}) \]
\[CTST = 1.176 \text{ kg/h} \]

II. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]
\[TMM = (30 \text{ días/mes})(24\text{ horas/día}) = 720 \text{ horas/mes} \]

III. Tiempo no disponible (TnD)

\[TnD = \sum \text{festivos, turnos no trabajados} \]
\[TnD = ((\#\text{Días no trabajados en el mes})(\#\text{Horas de un día})) + ((\#\text{Horas de un día}) - (\#\text{Horas trabajas en el día})) \]
* (\#\text{Días trabajados en el mes})
\[TnD = ((6 \text{ días/mes})(24\text{ horas/día})) + ((24\text{ horas/día}) - (8\text{ horas/día})) \]
* (25 \text{ días/mes}) = 544 \text{ horas/mes} \]

IV. Tiempo de no operación (TnO)

\[TnO = \text{Interrupciones planeadas,mantenimiento preventivo} \]
\[TnO = (30 \text{ min/turno})(1 \text{ turno/día}) = 30 \text{ min/día} \]
\[TnO = \frac{(30 \text{ min/día})}{(60 \text{ min/hora})} = 0,5 \text{ hora/día} \]
\[TnO = (0,5 \text{ hora/día})(25 \text{ días/mes}) = 12,5 \text{ horas/mes} \]
V. Tiempo de no producción (TnP)

\[TnP = (\text{Alistamiento y preparación} + \text{paradas y arrancadas} + \text{aseo}) \]
\[TnP = 18 \frac{\text{h}}{\text{mes}} + 10 \frac{\text{h}}{\text{mes}} + 15 \frac{\text{h}}{\text{mes}} \]
\[TnP = 43 \frac{\text{horas}}{\text{mes}} \]

VI. Tiempo de no funcionamiento (TnF)

\[TnF = \text{Interrupciones inesperadas (Daños y averías} + \text{accidentes)} \]
\[TnF = 4 \frac{\text{horas}}{\text{mes}} + 4 \frac{\text{horas}}{\text{mes}} \]
\[TnF = 8 \frac{\text{horas}}{\text{mes}} \]

VII. Tiempo de ajuste (Ta)

\[Ta = \text{Interrupciones pequeñas de todo tipo} \]
\[Ta = 0,5 \frac{\text{horas}}{\text{mes}} \]

VIII. Capacidad disponible (CD)

\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]
\[CD = (176 \frac{\text{horas}}{\text{mes}})(1.176 \frac{\text{kg}}{\text{hora}}) = 206.976 \frac{\text{kg}}{\text{mes}} \]

IX. Capacidad de operación (CO)

\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]
\[CO = (163,5 \frac{\text{horas}}{\text{mes}})(1.176 \frac{\text{kg}}{\text{hora}}) = 192.276 \frac{\text{kg}}{\text{mes}} \]

X. Capacidad de producción (CP)

\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]
\[CP = (120,5 \frac{\text{horas}}{\text{mes}})(1.176 \frac{\text{kg}}{\text{hora}}) = 141.708 \frac{\text{kg}}{\text{mes}} \]

XI. Capacidad de funcionamiento (CF)

\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]
\[CF = (112,5 \frac{\text{horas}}{\text{mes}})(1.176 \frac{\text{kg}}{\text{hora}}) = 132.300 \frac{\text{kg}}{\text{mes}} \]
XII. Capacidad real (CR)

\[CR = (Tiempo\ Especificado)(Capacidad\ de\ Producción\ Máquina) \]
\[CR = (112 \text{ horas}/\text{mes})(1.176 \text{ kg}/\text{hora}) = 131.712 \text{ kg}/\text{mes} \]

XIII. Eficiencia total (ET)

\[ET = \left(\frac{CR}{CD} \right) (100) \]
\[ET = \left(\frac{112 \text{ hora}/\text{mes}}{176 \text{ hora}/\text{mes}} \right) (100) = 63.63\% \]

XIV. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \]
\[EO = \left(\frac{112 \text{ hora}/\text{mes}}{163.5 \text{ hora}/\text{mes}} \right) (100) = 68.5\% \]

XV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \]
\[EP = \left(\frac{112 \text{ hora}/\text{mes}}{120.5 \text{ hora}/\text{mes}} \right) (100) = 92.95\% \]

XVI. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \]
\[EF = \left(\frac{112 \text{ hora}/\text{mes}}{112.5 \text{ hora}/\text{mes}} \right) (100) = 99.55\% \]
Anexo T Cálculo de la capacidad de producción de la tejedora circular orizio jersey de punto

TEJEDORA CIRCULAR ORIZIO JERSEY DE PUNTO

I. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[T_{MM} = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[T_{MM} = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[T_{MM} = \left(30 \ \frac{\text{días}}{\text{mes}} \right) \left(24 \ \frac{\text{horas}}{\text{día}} \right) = 720 \ \frac{\text{horas}}{\text{mes}} \]

II. Tiempo no disponible (TnD)

\[T_{nD} = \sum \text{festivos, turnos no trabajados} \]

\[T_{nD} = \left(\text{#Días no trabajados en el mes} \right) \left(\text{#Horas de un día} \right) + \left(\text{#Horas de un día} - \text{#Horas trabajadas en el día} \right) \times \text{#Días trabajados en el mes} \]

\[T_{nD} = \left(6 \ \frac{\text{días}}{\text{mes}} \right) \left(24 \ \frac{\text{horas}}{\text{día}} \right) + \left(24 \ \frac{\text{horas}}{\text{día}} - 8 \ \frac{\text{horas}}{\text{día}} \right) \times 25 \ \frac{\text{días}}{\text{mes}} = 544 \ \frac{\text{horas}}{\text{mes}} \]

III. Tiempo de no operación (TnO)

\[T_{nO} = \text{Interrupciones planeadas, mantenimiento preventivo} \]

\[T_{nO} = \left(45 \ \frac{\text{min}}{\text{turno}} \right) \left(1 \ \frac{\text{turno}}{\text{día}} \right) = 45 \ \frac{\text{min}}{\text{día}} \]

\[T_{nO} = \frac{45 \ \frac{\text{min}}{\text{día}}}{60 \ \frac{\text{min}}{\text{hora}}} = 0,75 \ \text{hora/día} \]

\[T_{nO} = \left(0,75 \ \frac{\text{hora}}{\text{día}} \right) \left(25 \ \frac{\text{días}}{\text{mes}} \right) = 18,75 \ \frac{\text{horas}}{\text{mes}} \]

IV. Tiempo de no producción (TnP)

\[T_{nP} = \left(\text{Alistamiento y preparación + carga y descarga} \right) \]

\[T_{nP} = \left(\text{paradas y arrancadas + aseo} \right) \]

\[T_{nP} = 10,5 \ \frac{\text{h}}{\text{mes}} + 12 \ \frac{\text{h}}{\text{mes}} + 6 \ \frac{\text{h}}{\text{mes}} + 15 \ \frac{\text{h}}{\text{mes}} \]

\[T_{nP} = 43,5 \ \frac{\text{horas}}{\text{mes}} \]
V. Tiempo de no funcionamiento (TnF)
\[TnF = \text{Interrupciones inesperadas (Daños y averías de la máquina)} \]
\[TnF = 2 \text{ horas/mes} \]

VI. Tiempo de ajuste (Ta)
\[Ta = \text{Interrupciones pequeñas de todo tipo} \]
\[Ta = 0,75 \text{ horas/mes} \]

VII. Capacidad disponible (CD)
\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]
\[CD = (176 \text{ horas/mes})(1.800 \text{ kg/hora}) = 316.800 \text{ kg/mes} \]

VIII. Capacidad de operación (CO)
\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]
\[CO = (157,25 \text{ horas/mes})(1.800 \text{ kg/hora}) = 283.050 \text{ kg/mes} \]

IX. Capacidad de producción (CP)
\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]
\[CP = (113,75 \text{ horas/mes})(1.800 \text{ kg/hora}) = 204.750 \text{ kg/mes} \]

X. Capacidad de funcionamiento (CF)
\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]
\[CF = (111,75 \text{ horas/mes})(1.800 \text{ kg/hora}) = 201.150 \text{ kg/mes} \]

XI. Capacidad real (CR)
\[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina}) \]
\[CR = (111 \text{ horas/mes})(1.800 \text{ kg/hora}) = 199.800 \text{ kg/mes} \]
XII. Eficiencia total (ET)

\[ET = \left(\frac{CR}{CD} \right) (100) \] \hspace{1cm} (26)

\[ET = \left(\frac{111 \text{ horas/mes}}{176 \text{ horas/mes}} \right) (100) = 63.07\% \]

XIII. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \] \hspace{1cm} (27)

\[EO = \left(\frac{111 \text{ horas/mes}}{157,25 \text{ horas/mes}} \right) (100) = 70.59\% \]

XIV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \] \hspace{1cm} (28)

\[EP = \left(\frac{111 \text{ horas/mes}}{113,75 \text{ horas/mes}} \right) (100) = 97.58\% \]

XV. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \] \hspace{1cm} (29)

\[EF = \left(\frac{111 \text{ horas/mes}}{111,75 \text{ horas/mes}} \right) (100) = 99.33\% \]
Anexo U Cálculo de la capacidad de producción de la teñidora, lavadora y secadora Efamein LVT400

TEÑIDORA, LAVADORA Y SECADORA EFAMEIN LVT400

I. Capacidad de producción

\[CP = \frac{(cap.\ prod.\ uso)(60\ min/h)}{(60\ min/h)} \]

\[CP = \frac{(400\ kg/\ uso)(60\ min/h)}{(25\ min/\ uso)} = 960\ kg/h \]

II. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[TMM = (30\ días/\ mes)(24\ horas/\ día) = 720\ horas/\ mes \]

III. Tiempo no disponible (TnD)

\[TnD = \sum \text{festivos,turnos no trabajados} \]

\[TnD = ((\#\ días\ no\ trabajados\ en\ el\ mes)(\#\ horas\ de\ un\ día)) + ((\#\ horas\ de\ un\ día) - (\#\ horas\ trabajas\ en\ el\ día)) \]

\[TnD = ((6\ días/\ mes)(24\ horas/\ día)) + ((24\ horas/\ día) - (8\ horas/\ día)) \]

\[TnD = 544\ horas/\ mes \]

IV. Tiempo de no operación (TnO)

\[TnO = \text{Mantenimiento preventivo} \]

\[TnO = (90\ min/\ semana)\left(\frac{6\ días/\ semana}{6\ días/\ semana}\right) = 15\ min/\ día \]

\[TnO = \frac{(15\ min/\ día)}{(60\ min/\ hora)} = 0,25\ horas/\ día \]

\[TnO = (0,25\ hora/\ día)(25\ días/\ mes) = 6,25\ horas/\ mes \]
V. Tiempo de no producción (TnP)

\[TnP = (\text{Alistamiento y preparación} + \text{cargue y descargue} + \text{paradas y arrancadas} + \text{aseo}) \]

\[TnP = 8\ h/mes + 15\ h/mes + 5\ h/mes + 8\ h/mes \]

\[TnP = 36\ \text{horas/mes} \]

VI. Tiempo de no funcionamiento (TnF)

\[TnF = \text{Interrupciones inesperadas (Daños y averías de la máquina)} \]

\[TnF = 1,5\ \text{horas/mes} \]

VII. Tiempo de ajuste (Ta)

\[Ta = \text{Interrupciones pequeñas de todo tipo} \]

\[Ta = 0,25\ \text{horas/mes} \]

VIII. Capacidad disponible (CD)

\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]

\[CD = \left(176\ \frac{\text{horas}}{\text{mes}}\right)\left(960\ \frac{\text{kg}}{\text{hora}}\right) = 168,960\ \text{kg/mes} \]

IX. Capacidad de operación (CO)

\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]

\[CO = \left(169,75\ \frac{\text{horas}}{\text{mes}}\right)\left(960\ \frac{\text{kg}}{\text{hora}}\right) = 162,960\ \text{kg/mes} \]

X. Capacidad de producción (CP)

\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]

\[CP = \left(133,75\ \frac{\text{horas}}{\text{mes}}\right)\left(960\ \frac{\text{kg}}{\text{hora}}\right) = 128,400\ \text{kg/mes} \]

XI. Capacidad de funcionamiento (CF)

\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]

\[CF = \left(132,25\ \frac{\text{horas}}{\text{mes}}\right)\left(960\ \frac{\text{kg}}{\text{hora}}\right) = 126,960\ \text{kg/mes} \]
XII. Capacidad real (CR)

\[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina}) \]

\[CR = \left(132 \frac{\text{horas}}{\text{mes}} \right) \left(960 \frac{kg}{\text{hora}} \right) = 126.720 \frac{kg}{\text{mes}} \]

XIII. Eficiencia total (ET)

\[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina}) \]

\[CR = \left(132 \frac{\text{horas}}{\text{mes}} \right) \left(960 \frac{kg}{\text{hora}} \right) = 126.720 \frac{kg}{\text{mes}} \]

XIV. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \]

\[EO = \left(\frac{132 \frac{\text{horas}}{\text{mes}}}{169,75 \frac{\text{horas}}{\text{mes}}} \right) (100) = 77,8\% \]

XV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \]

\[EP = \left(\frac{132 \frac{\text{horas}}{\text{mes}}}{133,75 \frac{\text{horas}}{\text{mes}}} \right) (100) = 98,7\% \]

XVI. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \]

\[EF = \left(\frac{132 \frac{\text{horas}}{\text{mes}}}{132,25 \frac{\text{horas}}{\text{mes}}} \right) (100) = 99,81\% \]
Anexo V Cálculo de la capacidad de producción de la maquina automática cortadora y rebobinadora

MAQUINA AUTOMÁTICA CORTADORA Y REBOBINADORA

I. Capacidad de producción

\[CP = (vel.\text{máx.})(\text{peso 1m de tela})(60 \text{min/h}) \] \hspace{1cm} (37)

\[CP = (180 \text{m/min})(0,1305 \text{kg/m})(60 \text{min/h}) \]

\[CP = 1.409,4 \text{ kg/h} \]

II. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \] \hspace{1cm} (15)

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[TMM = (30 \text{ días/mes})(24 \text{ horas/día}) = 720 \text{ horas/mes} \]

III. Tiempo no disponible (TnD)

\[TnD = \sum \text{festivos,turnos no trabajados} \] \hspace{1cm} (16)

\[TnD = ((\#\text{Días no trabajados en el mes})(\#\text{Horas de un día})) + ((\#\text{Horas de un día}) - (\#\text{Horas trabajadas en el día})) \]

\[TnD = ((6 \text{ días/mes})(24 \text{ horas/día}) + ((24 \text{ horas/día}) - (8 \text{ horas/día})) \]

\[* (25 \text{ días/mes}) = 544 \text{ horas/mes} \]

IV. Tiempo de no operación (TnO)

\[TnO = \text{Interrupciones planeadas, mantenimiento preventivo} \] \hspace{1cm} (17)

\[TnO = (20 \text{ min/turno})(1 \text{ turno/día}) = 20 \text{ min/día} \]

\[TnO = \frac{20 \text{ min/día}}{60 \text{ min/hora}} = 0,33 \text{ hora/día} \]

\[TnO = (0,33 \text{ hora/día})(25 \text{ días/mes}) = 8,25 \text{ horas/mes} \]
V. Tiempo de no producción (TnP)

\[TnP = \text{(Alistamiento y preparación + cargue y descargue} \]
\[+ \text{paradas y arrancadas + aseo)} \]
\[TnP = 6 \text{ h/mes} + 10 \text{ h/mes} + 6 \text{ h/mes} + 6 \text{ h/mes} \]
\[TnP = 28 \text{ horas/mes} \]

VI. Tiempo de no funcionamiento (TnF)

\[TnF = \text{Interrupciones inesperadas (Daños y averias de la maquina)} \]
\[TnF = 4 \text{ horas/mes} \]

VII. Tiempo de ajuste (Ta)

\[Ta = \text{Interrupciones pequeñas de todo tipo} \]
\[Ta = 0,75 \text{ horas/mes} \]

VIII. Capacidad disponible (CD)

\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]
\[CD = (176 \text{ horas/mes})(1.409,4 \text{ kg/hora}) = 248.054,4 \text{ kg/mes} \]

IX. Capacidad de operación (CO)

\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]
\[CO = (167,75 \text{ horas/mes})(1.409,4 \text{ kg/hora}) = 236.426,85 \text{ kg/mes} \]

X. Capacidad de producción (CP)

\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]
\[CP = (139,75 \text{ horas/mes})(1.409,4 \text{ kg/hora}) = 196.963,65 \text{ kg/mes} \]

XI. Capacidad de funcionamiento (CF)

\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]
\[CF = (135,75 \text{ horas/mes})(1.409,4 \text{ kg/hora}) = 191.326,05 \text{ kg/mes} \]
XII. **Capacidad real (CR)**

\[
CF = (Tiempo \ Funcionamiento)(Capacidad \ de \ Producción \ Máquina)
\]

\[
CF = (135,75 \ \text{horas/mes})(1.409,4 \ \frac{kg}{\text{hora}}) = 191.326,05 \ \frac{kg}{\text{mes}}
\]

XIII. **Eficiencia total (ET)**

\[
ET = \left(\frac{CR}{CD}\right)(100)
\]

\[
ET = \left(\frac{135 \ \text{horas/mes}}{176 \ \text{horas/mes}}\right)(100) = 76,70\%
\]

XIV. **Eficiencia de operación (EO)**

\[
EO = \left(\frac{CR}{CO}\right)(100)
\]

\[
EO = \left(\frac{135 \ \text{horas/mes}}{167,75 \ \text{horas/mes}}\right)(100) = 80,48\%
\]

XV. **Eficiencia de producción (EP)**

\[
EP = \left(\frac{CR}{CP}\right)(100)
\]

\[
EP = \left(\frac{135 \ \text{horas/mes}}{139,75 \ \text{horas/mes}}\right)(100) = 96,60\%
\]

XVI. **Eficiencia de funcionamiento (EF)**

\[
EF = \left(\frac{CR}{CF}\right)(100)
\]

\[
EF = \left(\frac{135 \ \text{horas/mes}}{135,75 \ \text{horas/mes}}\right)(100) = 99,45\%
\]
Anexo W Cálculo de la capacidad de producción de la cinta transportadora lineal con cinturón PU/PVC

CINTA TRANSPORTADORA LINEAL CON CINTURÓN PU/PVC

I. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \quad (15) \]

\[TMM = \sum \text{Tiempos de la maquina durante un ciclo determinado} \]

\[TMM = (30 \, \text{días/mes}) (24 \, \text{horas/día}) = 720 \, \text{horas/mes} \]

II. Tiempo no disponible (TnD)

\[TnD = \sum \text{festivos, turnos no trabajados} \quad (16) \]

\[TnD = ((\#Días no trabajados en el mes) (\#Horas de un día)) + ((\#Horas de un día) - (\#Horas trabajas en el día)) \]
\[\times (\#Días trabajados en el mes) \]

\[TnD = \left((6 \, \text{días/mes}) (24 \, \text{horas/día}) \right) + \left((24 \, \text{horas/día}) - (8 \, \text{horas/día}) \right) \]
\[\times (25 \, \text{días/mes}) = 544 \, \text{horas/mes} \]

III. Tiempo de no operación (TnO)

\[TnO = \text{Interrupciones planeadas, mantenimiento preventivo} \quad (17) \]

\[TnO = (15 \, \text{min/turno}) (1 \, \text{turno/día}) = 15 \, \text{min/día} \]

\[TnO = \frac{(15 \, \text{min/día})}{(60 \, \text{min/hora})} = 0,25 \, \text{hora/día} \]

\[TnO = (0,25 \, \text{hora/día}) (25 \, \text{días/mes}) = 6,25 \, \text{horas/mes} \]

IV. Tiempo de no producción (TnP)

\[TnP = (\text{Alistamiento y preparación + carga y descarga} \quad (18) \]
\[\quad + \text{paradas y arrancadas + aseo}) \]

\[TnP = 5 \, \text{h/mes} + 6 \, \text{h/mes} + 4 \, \text{h/mes} + 10 \, \text{h/mes} \]

\[TnP = 25 \, \text{horas/mes} \]
V. Tiempo de no funcionamiento (TnF)

\[TnF = Interrupciones rutinarias (Daños y averías de la máquina) \]
\[TnF = 2,5 \, \text{horas/mes} \] (19)

VI. Tiempo de ajuste (Ta)

\[Ta = Interrupciones pequeñas de todo tipo \]
\[Ta = 0,25 \, \text{horas/mes} \] (20)

VII. Capacidad disponible (CD)

\[CD = (Total \, Tiempo \, Disponible)(Capacidad \, de \, Producción \, Máquina) \]
\[CD = (176 \, \text{horas/mes})(720 \, \text{kg/hora}) = 126.720 \, \text{kg/mes} \] (21)

VIII. Capacidad de operación (CO)

\[CO = (Tiempo \, de \, Operación)(Capacidad \, de \, Producción \, Máquina) \]
\[CO = (169.75 \, \text{horas/mes})(720 \, \text{kg/hora}) = 122.220 \, \text{kg/mes} \] (22)

IX. Capacidad de producción (CP)

\[CP = (Tiempo \, de \, Producción)(Capacidad \, de \, Producción \, Máquina) \]
\[CP = (144.75 \, \text{horas/mes})(720 \, \text{kg/hora}) = 104.220 \, \text{kg/mes} \] (23)

X. Capacidad de funcionamiento (CF)

\[CF = (Tiempo \, Funcionamiento)(Capacidad \, de \, Producción \, Máquina) \]
\[CF = (142.25 \, \text{horas/mes})(720 \, \text{kg/hora}) = 102.420 \, \text{kg/mes} \] (24)

XI. Capacidad real (CR)

\[CR = (Tiempo \, Especificado)(Capacidad \, de \, Producción \, Máquina) \]
\[CR = (142 \, \text{horas/mes})(720 \, \text{kg/hora}) = 102.240 \, \text{kg/mes} \] (25)
XII. Eficiencia total (ET)

\[ET = \left(\frac{CR}{CD} \right) (100) \]
\[ET = \left(\frac{142 \text{ horas/mes}}{176 \text{ horas/mes}} \right) (100) = 80.68\% \]

XIII. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \]
\[EO = \left(\frac{142 \text{ horas/mes}}{169,75 \text{ horas/mes}} \right) (100) = 83.65\% \]

XIV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \]
\[EP = \left(\frac{142 \text{ horas/mes}}{144.75 \text{ horas/mes}} \right) (100) = 98.1\% \]

XV. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \]
\[EF = \left(\frac{142 \text{ horas/mes}}{142.25 \text{ horas/mes}} \right) (100) = 99.82\% \]
Anexo X Cálculo de la capacidad de producción de la máquina de moldeo por inyección de gran tamaño tipo híbrido FVX 1100 III- 600 L

MÁQUINA DE MOLDEO POR INYECCIÓN DE GRAN TAMAÑO TIPO HÍBRIDO FVX 1100 III- 600 L

I. Tiempo máximo de máquina (TMM) O Capacidad teórica

\[T_{MM} = \sum \text{Tiempos de la máquina durante un ciclo determinado} \]

\[T_{MM} = \sum \text{Tiempos de la máquina durante un ciclo determinado} \]

\[T_{MM} = (30 \text{ días/mes}) (24 \text{ horas/día}) = 720 \text{ horas/mes} \]

II. Tiempo no disponible (TnD)

\[T_{nD} = \sum \text{festivos, turnos no trabajados} \]

\[T_{nD} = (\#\text{Días no trabajados en el mes})(\#\text{Horas de un día}) + (\#\text{Horas de un día}) - (\#\text{Horas trabajas en el día}) \times (\#\text{Días trabajados en el mes}) \]

\[T_{nD} = \left(\left(6 \text{ días/mes} \right) \left(24 \text{ horas/día} \right) \right) + \left(\left(24 \text{ horas/día} \right) - \left(8 \text{ horas/día} \right) \right) \times \left(25 \text{ días/mes} \right) = 544 \text{ horas/mes} \]

III. Tiempo de no operación (TnO)

\[T_{nO} = \text{Interrupciones planeadas, mantenimiento preventivo} \]

\[T_{nO} = (45 \text{ min/turno}) (1 \text{ turno/día}) = 45 \text{ min/día} \]

\[T_{nO} = \frac{(45 \text{ min/día})}{(60 \text{ min/hora})} = 0,75 \text{ hora/día} \]

\[T_{nO} = \left(0,75 \text{ hora/día} \right) \left(25 \text{ días/mes} \right) = 18,75 \text{ horas/mes} \]

IV. Tiempo de no producción (TnP)

\[T_{nP} = \text{(Alistamiento y preparación + carga y descarga + paradas y arrancadas + aseo)} \]

\[T_{nP} = 5 \text{ h/mes} + 14 \text{ h/mes} + 6,7 \text{ h/mes} + 8,3 \text{ h/mes} \]

\[T_{nP} = 34 \text{ horas/mes} \]
V. Tiempo de no funcionamiento (TnF)

\[TnF = \text{Interrupciones rutinarias (Daños y averias de la máquina)} \]
\[TnF = 2 \text{ horas/mes} \]

VI. Tiempo de ajuste (Ta)

\[Ta = \text{Interrupciones pequeñas de todo tipo} \]
\[Ta = 0,25 \text{ horas/mes} \]

VII. Capacidad disponible (CD)

\[CD = (\text{Total Tiempo Disponible})(\text{Capacidad de Producción Máquina}) \]
\[CD = (176 \text{ horas/mes})(785 \text{ kg/hora}) = 138.160 \text{ kg/mes} \]

VIII. Capacidad de operación (CO)

\[CO = (\text{Tiempo de Operación})(\text{Capacidad de Producción Máquina}) \]
\[CO = (157,25 \text{ horas/mes})(785 \text{ kg/hora}) = 123.441,25 \text{ kg/mes} \]

IX. Capacidad de producción (CP)

\[CP = (\text{Tiempo de Producción})(\text{Capacidad de Producción Máquina}) \]
\[CP = (123,25 \text{ horas/mes})(785 \text{ kg/hora}) = 96.751,25 \text{ kg/mes} \]

X. Capacidad de funcionamiento (CF)

\[CF = (\text{Tiempo Funcionamiento})(\text{Capacidad de Producción Máquina}) \]
\[CF = (121,25 \text{ horas/mes})(785 \text{ kg/hora}) = 95.181,25 \text{ kg/mes} \]

XI. Capacidad real (CR)

\[CR = (\text{Tiempo Especificado})(\text{Capacidad de Producción Máquina}) \]
\[CR = (121 \text{ horas/mes})(785 \text{ kg/hora}) = 94.985 \text{ kg/mes} \]
\[CR_{dia} = \frac{CR_{mes}}{25 \text{ días prom/ mes}} \]

\[CR_{dia} = \frac{94.985 \text{ kg/ mes}}{25 \text{ días prom/ mes}} = 3.799.4 \text{ kg/ día} \]

\[CR_{Hora} = \frac{CR_{dia}}{8 \text{ Horas/ Día}} \]

\[CR_{Hora} = \frac{3.799.4 \text{ kg/ día}}{8 \text{ Horas/ Día}} = 475 \text{ kg/ hora} \]

\[CR_{UnidadxHora} = \frac{CR_{hora}}{\text{Peso 1 botón}} \]

\[CR_{UnidadxHora} = \frac{475 \text{ kg/ hora}}{0.00366 \text{ kg/ botón}} = 129.761 \text{ botones/ hora} \]

\[\text{Cant. Botones}_{\text{Moldeo x hora}} = \frac{(1.050 \text{ botones}) \left(\frac{3600 \text{ seg/ hora}}{30 \text{ seg}} \right)}{126.000 \text{ botones/ hora}} \]

\[\text{XII. Eficiencia total (ET)} \]

\[ET = \left(\frac{CR}{CD} \right) \left(\frac{100}{176 \text{ horas/ mes}} \right) \]

\[ET = \left(\frac{121 \text{ horas/ mes}}{176 \text{ horas/ mes}} \right) \left(\frac{100}{176 \text{ horas/ mes}} \right) = 68.75\% \]
XIII. Eficiencia de operación (EO)

\[EO = \left(\frac{CR}{CO} \right) (100) \]
\[EO = \left(\frac{121 \text{ horas/mes}}{157,25 \text{ horas/mes}} \right) (100) = 76,95\% \]

XIV. Eficiencia de producción (EP)

\[EP = \left(\frac{CR}{CP} \right) (100) \]
\[EP = \left(\frac{121 \text{ horas/mes}}{123,25 \text{ horas/mes}} \right) (100) = 98,17\% \]

XV. Eficiencia de funcionamiento (EF)

\[EF = \left(\frac{CR}{CF} \right) (100) \]
\[EF = \left(\frac{121 \text{ horas/mes}}{121,25 \text{ horas/mes}} \right) (100) = 99,8\% \]
Anexo Y Casa de la calidad - maquinaria
CASA DE CALIDAD MAQUINARIA.xlsx

Anexo Z Producción nacional tela poliéster
PRODUCCIÓN NACIONAL BOTONES FASE 2.xlsx

Anexo AA Producción nacional botones plásticos
PRODUCCIÓN NACIONAL TELA FASE 2.xlsx

Anexo BB Reportes simulación software Arena
REPORTES SIMULACION FASE 3.pdf

Anexo CC Video corrida simulación proceso productivo
CORRIDA SIMULACION PROCESO PRODUCTIVO.avi